Electrostatic Tools Manual

Oleg I. Titov and Dmitry A. Shulga

22nd February 2015

Contents

1 About

2 Installation

3 Tutorial
3.1 Multipole Fito
3.2 Multipole Placement L.
3.3 Topology Equivalence
3.4 Extra-Point Position Fito
3.5 Converting MMol to Common Format
3.6 Using Script Bindings,
4 Program Overview
4.1 General noteso
4.2 multfitter
4.3 epfitter
44 mmol2mol

5 File Formats

5.1
5.2
5.3
5.4

General Notes e
Multipole Orient Rules
Multipole Placement Rules
Multipole Molecule

10
10
11
12
12

14
14
14
16
19

1 About

Electrostatic Tools is a program package that aims to assist in developing of
next-generation molecular electrostatic models with an enhanced molecular elec-
trostatic potential (MEP) anisotropy. It provides the researcher with tools to fit
and for work with customizable atomic multipole moments (up to a quadrupole)
and extra-point charges. The models obtained are intended to use for description
of an electrostatic part of such highly anisotropic moieties as oxygens, nitrogens
with lone pairs and heavy halogens (Cl, Br, I) for halogen bonding.

2 Installation

The basic installation requires a functioning C++ compiler and development
versions of all prerequisites installed. Electrostatic Tools currently depends
on:

e CMake is used to control the build and installation process

e OpenBabel library is used to read and write molecules in common chem-
ical formats and perform SMARTS pattern matching

e Eigen3 library provides linear algebra solvers
e boost is also required (with program_options binaries compiled)

e optional SWIG to build script bindings. Currently only Perl and Python
are supported

Common procedure for all cmake-based packages can be applied:

tar -xf electrostatic-tools-0.1.0.tar.bz2
cd electrostatic-tools-0.1.0

mkdir build

cd build

cmake

make

make install

One can be interested in the following options that can be passed to cmake:

e -DCMAKE_INSTALL_PREFIX=__prefix__ This tells cmake to install the pack-
age in the __prefix__ directory. Most would like to use something like
~/el_tools. The default is /usr/local.

e -DCMAKE_BUILD_TYPE=Release This will change build configuration to a
Release version meaning fast optimized executables. The other useful
option is RelWithDebInfo meaning the release-optimized executables with
a debugging info.

e -DET_NO_mult_fitter=0N/OFF, -DET_NO_ep_fitter=0N/OFF and -DET_NO_mmol2mol=0N/OFF
These switches turn off compilation and installation of the corresponding
programs. The defaults are OFF

e -DET_PERL_BINDINGS=0N/OFF and -DET_PYTHON_BINDINGS=0N/OFF These
switches turn off compilation and installation of the corresponding lan-
guage bindings.

e -DET_PERL_LIBDIR and -DET_PYTHON_LIBDIR Manually specify the des-
tination of language bindings.

e -DET_PERL_INCLUDE_PATH, -DET_PERL_LIBRARY, -DET_PYTHON_INCLUDE_PATH
and -DET_PYTHON_LIBRARY can be used to override cmake’s guesses.

For example if you want to install the release-optimized package in your home
directory, you don’t need Perl bindings and you want to install Python bindings
in subfolder in your home directory, you should call:

cmake -DCMAKE_BUILD_TYPE=Release
-DCMAKE_INSTALL_PREFIX="/elec_tools
-DET_PERL_BINDINGS=0FF
-DET_PYTHON_LIBDIR="/elec_tools/lib

s

To temporarly add Electrostatic Tools to a $PATH variable invoke:
export PATH=$PATH:__prefix__/bin

for bash shell, where __prefix__ is your installation prefix, or for csh shell:

setenv PATH $PATH:__prefix__/bin

To permanently add Electrostatic Tools to $PATH invoke:
echo "export PATH=$PATH:__prefix__/bin" >> ~/.bashrc

for bash shell, where __prefix__ is your installation prefix, or for csh shell:

echo "setenv PATH $PATH:__prefix__/bin" >> ~/.cshrc

3 Tutorial

In this section we will discuss the usage of our programs. Files used in this tuto-
rial are shipped with the source package in an examples directory. We assume
that the package is compiled, installed and added to $PATH. Every program in
Electrostatic Tools has a build-in help available with a —-help switch.

3.1 Multipole Fit

To perform a multipole fit you will need a molecule structure in any common
file formats supported by OpenBabel and a reference electrostatic potential in
.esp format (used for a RESP-charges fitting within AmberTools package).
The sample files with a phenylbromide molecule (phbr.mol2) and the reference
RHF/6-31G* potential (phbr.esp) are located in the examples directory of the
source tree. We'll make a temporary working directory and copy the files there
assuming that the source code was untarred in home directory.

mkdir ~/tutorial

cd “/tutorial

cp “/electrostatic-tools-0.1.0/examples/phbr.mol2
cp “/electrostatic-tools-0.1.0/examples/phbr.esp

To perform a simple fit with default parameters invoke:

mult_fitter phbr.mol2 phbr.esp

In case everything went well no console output appears. This command pre-
frormed the fit of atomic charges and multipoles of the phenylbromide molecule
to the reference MEP with default settings. Two files should appear in the
working directory: phbr.mmol and phbr.log. The first one contains the results
- a phenylbromide molecule with multipoles, the second one is a log with an
additional information describing the fit process. Your phbr.mmol file should
look like the following:

Molecule:

/* Atom 1 Br x/

Atom: 35 (0.9991, 0.0803, 0.1295)

Multipoles: (0.9991, 0.0803, 0.1295)
Monopole: -0.18347

Quadrupole: (-0.81548, 0, 0, 0, -0.81548, 0, 0, O, 1.631)

/* Atom 2 C x/

Atom: 6 (2.882, 0.1014, -0.0402)

Multipoles: (2.882, 0.1014, -0.0402)
Monopole: 0.27616

/* Atom 3 C %/

Atom: 6 (3.5573, 1.3195, -0.1026)

Multipoles: (3.5573, 1.3195, -0.1026)
Monopole: -0.26482

/* Atom 4 C */

Atom: 6 (4.9466, 1.3334, -0.2343)

Multipoles: (4.9466, 1.3334, -0.2343)
Monopole: -0.11137

/* Atom 5 C x/

Atom: 6 (5.6536, 0.132, -0.3014)

Multipoles: (5.6536, 0.132, -0.3014)
Monopole: -0.15636

/* Atom 6 C */

Atom: 6 (4.9736, -1.0845, -0.235)

Multipoles: (4.9736, -1.0845, -0.235)
Monopole: -0.11137

/* Atom 7 C */

Atom: 6 (3.5842, -1.1018, -0.1044)

Multipoles: (3.5842, -1.1018, -0.1044)
Monopole: -0.26482

/* Atom 8 H */

Atom: 1 (3.0135, 2.2588, -0.0508)

Multipoles: (3.0135, 2.2588, -0.0508)
Monopole: 0.18885

/* Atom 9 H */

Atom: 1 (5.478, 2.2803, -0.2855)

Multipoles: (5.478, 2.2803, -0.2855)
Monopole: 0.14652

/* Atom 10 H =/

Atom: 1 (6.7358, 0.1442, -0.4058)

Multipoles: (6.7358, 0.1442, -0.4058)
Monopole: 0.14529

/* Atom 11 H */

Atom: 1 (5.5259, -2.0194, -0.2859)

Multipoles: (5.5259, -2.0194, -0.2859)
Monopole: 0.14652

/* Atom 12 H x/

Atom: 1 (3.0612, -2.0529, -0.0547)

Multipoles: (3.0612, -2.0529, -0.0547)
Monopole: 0.18885

Bond: 1 - 2 : 1
Bond: 2 - 3 : a
Bond: 3 - 4 : a
Bond: 4 - 5 : a

Bond: 5 - 6 : a
Bond: 6 - 7 : a
Bond: 2 - 7 : a
Bond: 3 - 8 : 1
Bond: 4 - 9 : 1
Bond: 5 - 10 1
Bond: 6 - 11 1
Bond: 7 - 12 1

Orient-rules:

rule: z R

rule: a "Lr#99]~ [1#99]"

rule: a "Lr#OOI#['#99]"

rule: b "Lr#99]1 " ['#99]=,@[!#99]"

rule: b "LI#99]=['#99] " [1#99]"

rule: c "LI#99] (T ['#99]) " ['#99]1"

rule: c "[1#99]1(=,@[!'#99])~ ['#99]1"

rule: d "[r#99] (['#99]1) C['#99]) [t#99]"
rule: b "Lr#991 (=[!'#991) (['#99]1) ['1#99]1"
rule: z "Lr#991 (L'#991) (['#991) (['#99]) [1#99]1"
rule: a "LI#99] (=['#99])=["'#99]1"

rule: a "LI#99] (=['#99!#6]1)=['#99]"

rule: b "Lr#99]1 (T [1#99]) (=['1#99])=[!#99]"
rule: a "[#99]1['#99]1#['#99]1"

rule: e "I#99T1['#99A1 (['#99])=,@ ['#99A]1"
rule: e "[#9911[!'#99]-,=,@[!#99]1"

/ *

Fitted 14 parameters with 6 constraints by 4617 points
RMSD: 0.6277 kcal/mol
*/

It consists of three sections: the molecule description, the rules for orientation
of the multipoles and a comment.

We support C-style comments (/* comment */) in our custom file formats, so it
is possible to store any relevant information directly in the file with a molecule.
mult_fitter saves a fitted MEP description error and a number of parameters
with a number of applied constraints.

The molecule section consists of a description of atoms and bonds. The bond
format is intuitive. The atoms are stored as pairs of nucleus charges with co-
ordinates in Angstroms. Every atom may have a single multipole expansion
associated with it. The multipoles values are printed in atomic units. The
quadrupole matrix is printed in a row-by-row manner on a single line. Note
that the multipoles are shown in principal axes, so they can be easily anal-
ysed.

The contents of the phbr.log file should be as the following:

Multipole fitter v 0.1.0

MEP Fitter initialized.
Forcing tolopogical equivalency: 1
Tolopogical information will be recalculated: O
Molecule with 12 atoms loaded.
20 atom and O group multipole positioning rules loaded.
4617 points of field loaded.
0 dummy atoms added.
Created distance matrix 4617x14
Using SVD fitter.
Created constraints matrix 6x14
Fitting
Fit completed.
Fitted 14 parameters with 6 constraints by 4617 points
RMSD: 0.6277 kcal/mol
————————————————— SVD analysis ---—-—-—-——------—----
Condition number cutoff: 1e+07
Condition number of the system: 99.1938
Singular values:
5.88127
2.25863
1.44742
1.21237
0.482768
0.195794
0.105907
0.0592907
1.26362e-15
2.02354e-16
6.8374e-17
1.13256e-17
5.90198e-18
4.81634e-20

Parameters: Z1 (Qxx1 Qyy1l z2 z3 z4
75 76 z7 Z8 Z9 210 z11
Z12
Right singular vectors (V**T):

0.516791 0.00489199 0.00489199 0.260871

Along with the details of the fit this file contains a valuable information provided
by a SVD fitter: the condition number of a model matrix and a list of singular
values with right singular vectors. In this particular case the first shows that the
charges and the quadrupole were well-defined. The last two ones help analyse
the system if any problem with the fit stability occurs. The ”"Parameters:”
header and the ”V**T” matrix are tab separated so they can be easily pasted in
any spreadsheet processor for further analysis.

If you try to rerun the calculation (note a different way to pass command line
arguments) it will terminate with the following error:

$mult_fitter -I phbr.mol2 -G phbr.esp -0 phbr.mmol \

-L phbr.log
Error: output molecule file exists. Aborting.

No Electrostatic Tools program will overwrite existing files to preserve any pre-
vious results in case of a typo. To ignore this and overwrite the existing files
pass a -f key.

3.2 Multipole Placement

In the previuos example we used the default multipole placement policy. This
policy can be overriden by specifying a multipole placement rulefile. Let’s as-
sume we want to place a symmetric quadrupole on the bromine and a dipole on
the p-hydrogen atoms. Create a custom file with the rules and perform the fit
with these rules by invoking (note another way of passing the filenames):

cat > custom.rules << "EOF"
Placement —rules:
/* charge on any atom */

atom: "x" m
/* charge + symmetric quarupole on bromine */
atom: "[Br]" mq *

/* charge + dipole on p-hydrogen */

atom: "[#1]cccc[Brl]l" md

EOF

mult_fitter -Iphbr.mol2 -Gphbr.esp -p custom.rules \
-0Ophbr.custom.mmol

phbr.custom.mmol contains the resulting molecule. Currently we support fit-
ting of dipoles with the fixed direction along a local Z-axis, so the dipole has
two zero components. The rulefile 1has a quite simple syntax. We specify a
SMARTS pattern of the desired atom (Note that hydrogens are matched by
"[#1]1" and NOT "[H]") and a list of the required multipoles: m, d and q for a
monopole, a dipole and a quadrupole respectively with an asterisk (*) meaning a
symmetry restriction on the quadrupole. The patterns are matched in the same
order as they go in the file. Each subsequent rule overrides the previous ones,
so the most general rules should go before anything special. When no rulefile is
specified the default, located in __prefix__/share/electrostatic_tools/<version>/
placement.rules, is used.

3.3 Topology Equivalence

For this tutorial we will need the meoh. * files from the examples directory.

By default mult_fitter preserves topology equivalence so the equivalent atoms
get the equivalent charges and multipoles fitted. This behaviour can be over-
riden by a -b flag. For example we want to fit atomic charges for methanol
molecule without respect to its topology (namely the equivalence of hydrogen
atoms within the —C Hj3 group).

10

mult_fitter -I meoh.mol2 -G meoh.esp -0 meoh.b.mmol \
-p m.rules -b

Note that we are using our custom multipole placement rules without any mul-
tipoles beyond monopole. The programs uses atomic charges as the source
of topological information. If two atoms of the same chemical element have
equal charges, they are considered equivalent. By inspecting the meoh.mol2 and
meoh.b.mmol files one can check that however the input file had a topologically
symmetrical charges, the output does not. On the contrary, if an input molecule
has bad charges assigned, the topologically symmetric Gasteiger charges may
be recalculated with the -r key to enforce the charge (and multipole) symmetry
of the fit:

mult_fitter -I meoh.mulliken.mol2 -G meoh.esp \
-0 meoh.r.mmol -p m.rules -r

3.4 Extra-Point Position Fit

The ep-fitter program is used to perform the optimization of the extra-point
(EP) positions. It places extra-points at atoms specified with SMARTS mask.
We will call these atoms EP-hosts. Lets perform the EP position optimizaion
for a m-fluorobrombenzene which is saved in mo136.mo12 and mol36. esp files in
the examples directory. We'll place the extra-points on the bromine atom and
use a charge-only rulefile which can be found in the examples directory.

ep_fitter -I mol36.mol2 -G mol36.esp -p m.rules \
-M" [Br] "

The output was saved to the mol36.ep.mmol and mol36.ep.log files. The
program places the EP on the local Z-axis of the atom, defined by the orient
rules, and then searches for the position with the lowest MEP RMSD value. The
optimization tooks more time than a simple charge fit since it uses the Nelder-
Mead simplex algorith for the position optimization with the charge refit at
every step. The program saves the EP as the atom with a zero nuclear charge
meaning a dummy, nonexistent, atom.

The use of the Nelder-Mead algorithm looks strange when dealing with a single
parameter optimization, however we can optimize several EP centers simulta-
neously. Lets try to add extra-points to the both bromine and fluorine, This
time we will need to increase a maximum iteration limit for the optimization
to converge. We have also switched to a faster charge fitting algorithm to save
some time. Additionally we specified a different file for the output.

ep_fitter -I mol36.mol2 -G mol36.esp -p m.rules \
-M"[Br]" -M"[F]" -a FullPivLU -m 150 \
-0 mol36.2ep.mmol

If you investigate the result you will notice, that the EP-Br distance converged

to 1.3 A, while the EP-F distance became -5 A. The negative value of the
distance means that EP has penetrated its host atom and traversed inside the

11

molecule. In this case, -5 Aactually means that it traversed the whole molecule
and stopped at the reference grid border. This behaviour is normal for the
fluorines since they do not need any special anisotropy treatment.

One more thing should be mentioned about the EP position optimization pos-
sibilities. Since we’re using the same code for the charge fitting, it is possible to
fit simultaneously both multipoles and EP positions (with relevant placement
rules set). It is even possible to place multipoles on the extra-point centers
and optimize their positions, however note, that internally EPs are stored as
Einsteinium (" [#99]", because matching " [#0] " doesnot work). When the mul-
tipole placement rules tell the fitter to add the multipoles on the EP-host atom
it ignores this rule, leaving the host with charge only, however this behaviuor
can be overriden by the -k switch.

3.5 Converting MMol to Common Format

After we fitted the charges or multipoles, we can convert the resulting .mmol
file into any common chemical file format supported by OpenBabel with the
mmol2mol program. Try this:

mmol2mol phbr.mmol

By default it strips all multipoles and saves the molecule as a TRIPOS MOL2
file, but this behaviour can be overriden with the -0 and -t flags to change the
output file and its format if automatic extention based guessing fails. You can
also try MCC conversion options to preserve multipole data, however this part
is still under research and is subject to change.

3.6 Using Script Bindings

To analyse fit results you can also use script language bindings. Unfortunately
currently we do not provide any reference documentation, so you’ll have to look
into source code for reference. We’ll provide a simple example python script
here. This script uses the phbr.mmol file generated earlier in this tutorial.

import openbabel
import ElectrostaticTools

Tead molecule with multipole support from file
mol = ElectrostaticTools.GeneralMultipoledMolecule ()
mol .readMe ("phbr .mmol")

save 1t as MOL2

note: GeneralMultipoledMolecule %s OBMol subclass
so we can use any OpenBabel API

conv = openbabel.O0BConversion ()

conv.SetOutFormat ("mol2")

conv.WriteFile(mol, "test.mol2")

12

#

we can tterate other the atoms

for atom in openbabel.OBMolAtomIter (mol):

#

print (atom.GetAtomicNum())

print molecule in MMOL format

print (mol.toString())

#
#

check +f multipole expansion exists on the first
atom and print the monopole and quadrupole wvalue

if (mol.hasMultipoles (1))

#

mult = mol.GetRawMultipoles (1)
if (mult.hasMonopole ())
print ("\nMonopole value: ",
mult.monopole ().value ())
if (mult.hasQuadrupole ())
print ("\nMonopole value: ",
mult.quadrupole ().value().toString())
or simply print the expansion as s
print ("\nMultipoles on the first atom:")
print (mult.toString())

or we can get oriented multipoles
print ("\nOriented multipole on the first atom:")

print (mol.GetMultipoles (1).toString())

or we can get rTaw multipoles from atom

mult = ElectrostaticTools.Multipoles(

mol.GetAtom (2).GetData("Multipoles")
)

print ("\nMultipoles from atom:")
print (mult.toString())

13

4 Program Overview

4.1 General notes

All programs included in the package are non-interactive command line tools,
written with UNIX philosophy in mind — they are silent if everything is going
fine, however some noncritical messages can be logged. All tasks are formulated
with command line arguments. Thanks to the boost: :program_options li-
brary there are several ways to pass an argument to the program. The following
invocations are identical:

progname --long-option arg
progname --long-option=arg
progname -1 arg
progname -larg

However some constructions are NOT available, such as:

progname --no-long-option
progname --with-long-option
progname --disable-long-option
etc

progname -l=arg

Some arguments are considered essential for the program execution and can
be specified without a key. In this case the order of such keyless options is
important. For example:

mult_fitter molecule.mol2 grid.esp

1is fine

mult_fitter molecule.mol2 grid.esp -f

1s fine

mult_fitter -c 1e9 molecule.mol2 grid.esp
1is fine

mult_fitter grid.esp molecule.mol2

will terminate with an error

4.2 mult_fitter

The mult_fitter program performs fitting of the atom-centered multipoles to
the specified reference molecular electrostatic potential (MEP). The MEP is
specified in a form of AMBER .esp file. The input molecule can be specified
in any chemical format understood by the OpenBabel library. The result is
saved into our plan-text .mmol file format. Multipole positioning is controlled
by SMARTS patterns which are read from a separate file. The multipoles are
fixed in the orientation regarding the neighboring atoms which is controlled
through another file. It is possible to constrain the topological equivalence of
atoms (which can be precisely controlled) and the symmetry of quadrupoles.
Addition of dummy multipole centers in the geometrical center of atom groups
specified by a SMARTS pattern is also possible.

14

Some of possible invocation patterns:

mult_fitter <input> <MEP .esp> [output] [options]
mult_fitter -I <input> -G <MEP .esp> -0 <output> \
[options]

Generic options:

——version print the program name and version and exit.
——help print a help message to console and exit.

Input control:

—I, ——input < arg > required an input molecule file. This parameter is also
read as the first argument without a key, so the key can be omitted.

—t, ——filetype < arg > an input molecule file type specified as common ex-
tenson for this filetype. Generally the filetype is guessed by the file exten-
sion (GUESS option). This key overrides this guess.

—G, ——grid < arg > required a reference MEP in the .esp format. This
parameter is also read as the second argument without a key, so the key
can be omitted. Atomic coordinates in the .esp files are ignored, but the
total charge is used as a constraint in the fitting procedure.

—p, ——placement-rules < arg > multipole placement rules specified in spe-
cial format. The multipoles are placed according to SMARTS patterns.
Note that OpenBabel SMARTS are different from Daylight SMARTS
(see http://openbabel.org/wiki/SMARTS). See the format description for
more info on how to setup custom rules.

—o0, ——orient-rules < arg > multipole orient rules. The multipoles are placed
according to SMARTS patterns. Note that OpenBabel SMARTS are dif-
ferent from Daylight SMARTS (see http://openbabel.org/wiki/SMARTS).
See the format description for more info on how to setup custom rules.

Output control:

—0, ——output < arg > an output molecule file. This parameter is also read
as the third argument without a key, so the key can be omitted. The
default name is generated by replacing the last file extension from the
input file name with mmol. In order to save previous results, the program
will terminate if the output file exists. The molecule is saved in a custom
plain-text format which was designed to support atomic multipoles. See
the format description for more info.

—L, ——log < arg > a log file. The default name is generated by replacing
the last file extension from the input file name with the log. In order to
save previous results, the program will terminate if the log file exists. The
log contains important information about program workflow and some fit
data. It is saved as a plain-text.

—f, ——force-output a switch to overwrite the output and log files if they are
already present.

MEP fit control:

15

—a, ——algorithm < arg > a MEP fit algorithm selector. Valid values are:
SVD, LLT, LDLT, PartialPivLU, FullPivLU, HouseholderQR, ColPivHouseholder(R,
FullPivHouseholderQR. The SVD algorithm uses the method published
by Sigfridson and Ryde (J. Comput. Chem. 1998, 19(4), 377). It works
with a model matrix without raising it to the power of two, thus increasing
the stability of the fit. The other methods deal with the squared model
matrix and a Lagrange constraints. The details about them can be found
in Eigen3 documentation.

—c, ——cutoff < arg > a condition value cutoff (the largest singular value di-
vided by the smallest one) used in the SVD pseudoinversion procedures to
eliminate statistical noise. This parameter is used only when fitting with
the SVD fitter. The default value is 107.

—r, ——recalculate-topology a flag to force fitter to recalculate atomic charges
used to force the equivalency of the topologically equivalent atoms. The
atoms are forced to have equal charges and multipoles if they belong to
the same chemical element and have the equal partial charges assigned.
If this flag is set, the Gasteiger charges are calculated and used for this
purpose since they are topologically symmetrical. Note that sometimes
there are not enouth digits in a charge field of the input molecule file
and non-equivalent charges have the same charge, for example meta- and
para- hydrogens and sometimes carbons in monosubstituted benzenes in
the MOL2 file format. Generally turning on this flag is a good idea if you
are not controlling your input charges manually.

—b, ——break-equivalency a flag to disable the equivalency constraints. The
only constraints added with this flag is total charge and quadrupole sym-
metry constraints.

4.3 ep_fitter

The ep_fitter program fits the extra-point (EP) charge positions and atom-
centered multipoles with the specified reference molecular electrostatic potential
(MEP). The MEP is specified in a form of AMBER . esp file. The input molecule
can be specified in any chemical format understood by the OpenBabel library.
The result is saved into our plan-text .mmol file format. Multipole positioning
is controlled by SMARTS patterns which are read from a separate file. The
multipoles are fixed in the orientation regarding the neighboring atoms which
is controlled through another file. It is possible to constrain the topological
equivalence of atoms (which can be precisely controlled) and the symmetry of
quadrupoles. Addition of dummy multipole centers in the geometrical center of
atom groups specified by a SMARTS pattern is also possible. The extra-points
are added to the host atoms specified by SMARTS patterns.

This program uses the same code as the mult_fitter for multipole and charge
fitting so most of the options are exactly the same, however all options are
provided here for consistency. The nonlocal EP position optimization runs on
top of the linear charge and multipole fitting. The Nelder-Mead simplex search
local optimization algorithm is used for this purpose.

16

Some of the possible invocation patterns:

ep_fitter <input> <MEP .esp> -M"[Cl,Br,I]" \
[output] [options]

ep_fitter -I <input> -G <MEP .esp> -0 <output> \
-M"[C1,Br,I]" [options]

Generic options:

——version print the program name and version and exit.
——help print a help message to console and exit.

Input control:

—I, ——input < arg > required an input molecule file. This parameter is also
read as the first argument without a key, so the key can be omitted.

—t, ——filetype < arg > an input molecule file type specified as common ex-
tenson for this filetype. Generally the filetype is guessed by the file exten-
sion (GUESS option). This key overrides this guess.

—G, ——grid < arg > required a reference MEP in the .esp format. This
parameter is also read as the second argument without a key, so the key
can be omitted. Atomic coordinates in the .esp files are ignored, but the
total charge is used as a constraint in the fitting procedure.

—p, ——placement-rules < arg > multipole placement rules specified in spe-
cial format. The multipoles are placed according to SMARTS patterns.
Note that OpenBabel SMARTS are different from Daylight SMARTS
(see http://openbabel.org/wiki/SMARTS). See the format description for
more info on how to setup custom rules.

—o0, ——orient-rules < arg > multipole orient rules. The multipoles are placed
according to SMARTS patterns. Note that OpenBabel SMARTS are dif-
ferent from Daylight SMARTS (see http://openbabel.org/wiki/SMARTS).
See the format description for more info on how to setup custom rules.

Output control:

—0, ——output < arg > an output molecule file. This parameter is also read
as the third argument without a key, so the key can be omitted. The
default name is generated by replacing the last file extension from the
input file name with mmol. In order to save previous results, the program
will terminate if the output file exists. The molecule is saved in a custom
plain-text format which was designed to support atomic multipoles. See
the format description for more info.

—L, ——log < arg > a log file. The default name is generated by replacing
the last file extension from the input file name with the log. In order to
save previous results, the program will terminate if the log file exists. The
log contains important information about program workflow and some fit
data. It is saved as a plain-text.

—f, ——force-output a switch to overwrite the output and log files if they are
already present.

17

MEP fit control:

—a, ——algorithm < arg > a MEP fit algorithm selector. Valid values are:
SVD, LLT, LDLT, PartialPivLU, FullPivLU, HouseholderQR, ColPivHouseholder(QR,
FullPivHouseholderQR. The SVD algorithm uses the method published
by Sigfridson and Ryde (J. Comput. Chem. 1998, 19(4), 377). It works
with a model matrix without raising it to the power of two, thus increasing
the stability of the fit. The other methods deal with the squared model
matrix and a Lagrange constraints. The details about them can be found
in Eigen3 documentation.

—c, ——cutoff < arg > a condition value cutoff (the largest singular value di-
vided by the smallest one) used in the SVD pseudoinversion procedures to
eliminate statistical noise. This parameter is used only when fitting with
the SVD fitter. The default value is 107.

—r, ——recalculate-topology a flag to force fitter to recalculate atomic charges
used to force the equivalency of the topologically equivalent atoms. The
atoms are forced to have equal charges and multipoles if they belong to
the same chemical element and have the equal partial charges assigned.
If this flag is set, the Gasteiger charges are calculated and used for this
purpose since they are topologically symmetrical. Note that sometimes
there are not enouth digits in a charge field of the input molecule file
and non-equivalent charges have the same charge, for example meta- and
para- hydrogens and sometimes carbons in monosubstituted benzenes in
the MOL2 file format. Generally turning on this flag is a good idea if you
are not controlling your input charges manually.

—b, ——break-equivalency a flag to disable the equivalency constraints. The
only constraints added with this flag is total charge and quadrupole sym-
metry constraints.

EP position fit control:

—M, ——host-mask < arg > the SMARTS mask of the EP host atoms. The
key is repeatable so multiple masks can be specified. The EP is placed on
the local Z-axis specified by the orientation rules and it is ensured that the
EP is located ”outside” of the molecule. By default the multipoles, placed
on the EP hosts are removed, since it’s strange to have two anisotropic
enhancements for a single atom.

—x, ——fixed-position < arg > fixed EP distance from halogen atom in Angstroms.
No optimization will be applied. Overrides any optimization option.

—d, ——init-position < arg > the initial distance between EP and its host
atom in Angstroms for optimization procedure. The default value is 1.5

—s, ——init-step < arg > the initial step of EP-host distance in Angstroms
for the optimization procedure. Positive values mean the increase of the
distance while the negative ones mean the decrease. The default value is

0.1 A.

—e, ——precision < arg > a required position precision in Angstroms. Short

18

name is abbreviated from the word ”epsilon”. Technically, this is a maxi-
mum simplex radius. The default value is 1073 A.

—m, ——max-steps < arg > the maximum number of optimization steps. The
search is stopped at this point and the failure is reported in log. The de-
fault value is 100.

—k, ——keep-multipoles a flag to override removal of multipoles from EP
hosts.

4.4 mmol2mol

The mmol2mol program converts .mmol files t common chemical formats with
respect to the atomic multipoles in these files.

Some of possible invocation patterns:

mmol2mol <options>

mmol2mol <in_mol> <out_mol> [options]

Generic options:

——version print the program name and version and exit.

——help print help message to console and exit.

Input control:

—I, ——input < arg > required an input molecule file in the .mmol format.
This parameter is also read as the first argument without a key, so the
key can be omitted.

Output control:

—0, ——output < arg > an output molecule file. This parameter is also read
as the second argument without a key, so the key can be omitted. The
default name is generated by replacing the last file extension from the input
file name with "mo12” and the molecule is saved in a TRIPOS MOL2 file
format. In order to save the previous results, the program will terminate
if the output file exists.

—t, ——filetype < arg > an output molecule filetype, specified as a common
extenson for this filetype. Generally the filetype is guessed by the output
file extension (”GUESS” option). This key overrides this guess.

—f, ——force-output a switch to overwrite the output files if it is already
present.

Conversion control:

NOTE: The further options work, however the work on MCC is still in progress
and not published, so the behaviour may change in future versions. Use it on
your own risk.

—M, ——mcc-mask < arg > the multipoles on the atoms matching this mask
will be substituted by a multipole charge cluster (MCC). This cluster is

19

composed of a set of several extra-point charges (2-6) and in combination
with the charge of the host atom creates a MEP distribution, analogous
to the multipolar one. The key is repeatable so multiple masks can be
specified.

—r, ——radius < arg > the MCC radius in Angstroms as the distance between
the host atom and the extra-points. The default is 0.1 A.

—d, ——ignore-dipole do not convert atomic dipoles to the MCC.

—d, ——ignore-quadrupole do not convert atomic quadrupoles to the MCC.

20

5 File Formats

5.1 General Notes

All the following file formats support C-style comments (/* comment */) so any
additional information can be stored next to the data in an arbitrary format.
The comment parsers are not very smart so do not nest your comments. The
spaces, newlines and tabulation characters are ignored, so a fancy text alighning
can be achieved. We prefer to save SMARTS patterns in quotes. These quotes
are required by the format, so we can check that a pattern was specified and
we’re not reading something different.

The files are separated in sections. Every section starts with a header ending
with a colon sign and ends with the beginning of the next section.

5.2 Multipole Orient Rules

Multipole orient rules controls the orientation of a local coordinate frame for
each atom. The rules start with a common ”0Orient-rules:” header and con-
tain records of individual rules. The records are passed from top to bottom,
with the latter overriding the former, so the ordering is important. The first
one should be something general with very specific ones at the bottom of the
list.

Orient -rules:
rule: z "x"

rule: a "[!#99] - [!'#99]"

rule: b "[!#99]=[!#99]1 [!#99]1"

rule: c "[!#99] (" ['#99]1) [!'#99]1"

rule: d "[!'#99]1 ([!'#991) (['#991) ['#99]1"

rule: z "[!'#99] (C[!'#991) C[!'#99]1) C[!#99]) ['#99]1"
rule: e "[#99]11[!#99]-,=,Q@['#99]1"

Each rule starts with the "rule:” keyword, followed by a letter, followed by
a SMARTS pattern. The quotes around the SMARTS pattern are mandatory.
The order of atoms in SMARTS is important in most cases. The first atom is
a center of the multipole expansion and the local frame orign, the meaning of
the others are determined by the letter, which encodes the rule type. Note that
we use " [#99]" internally as a dummy atom, because SMARTS like " [#0]" or
" [#200] " do not work. That’s why the orientation rule’s SMARTS patterns look
a little strange. Also note, that if your molecule contains Einsteimium (which is
hardly the case), you should temporarly change it to something different.

z Only the first atom is important. This rule means that we do not care
about the local frame orientation. For example it is hard to pick sensible
orientation for tetrary carbons. Identity matrix is used as the coordinate
transformation matrix.

a The first two atoms are important. This is the rule for linear nonconjugated
fragments such as monovalent atoms or alkynes. The Z-axis is directed

21

from the second atom to the first. The X- and Y- axes are undefined and
picked through a vector product of the local Z-axis and the global axes.

b The first three atoms are important. This is the rule for conjugated linear
fragments, or the fragments, where we can suspect any type of interaction
with the nearest neighbour, or for the atoms with double bonds. In this
case the Z-axis is directed from the second atom to the first. The X-axis
is perpendicular to the plane, defined by the first three atoms in SMARTS
and the Y-axis is perpendicular to the local X- and Z- axes.

c The first three atoms are important. This rule is for bivalent linkers like
ether group. The Z-axis directed along the bisector of 2-1-3 angle and
poits from the sharp end of this angle "outside” of the molecule. The
X-axis is perpendicular to the plane, defined by the first three atoms of
the SMARTS and the Y-axis is perpendicular to the X- and Z- axes.

d The first four atoms are important. This rule is for trivalent atoms like
amine nitrogen.

e In the case of a pyramidal configuration of the first atom, the Z-axis
points out of the top of the pyramid in the direction, formed as sum
of normalized bond vectors, pointing to the top of the pyramid. The
X-axis is defined as a vector product of the Z-axis and the 2—1 bond
vector. The Y-axis is a vector product of the X- and Z- axes.

e In the case of a planar configuration of the first atom, the X-axis is
the 2—1 bond vector, the Z-axis is a vector product of the X-axis
and the 3—1 bond vector, so it points out of the plane. The Y-axis
is perpendicular to the both X- and Z- axes.

e The first three atoms are important. This is special rule for the dummies.
The X-axis is defined as the vector from the second atom to the first one.
The Z-axis is perpendicular to the plane defined by the first three atoms.
The Y-axis is perpendicular to the both X- and Z- axes.

5.3 Multipole Placement Rules

The Multipole placement rules format is easy to read and modify. The rules start
with a common ”"Placement-rules:” header. There are two types of records:
"atom” and "group”. The records are passed from the top to the bottom, with
the latter overriding the former, so the ordering is important. The first one
should be something general with very specific ones at the bottom of the list.
See the example with an ”any atom”, followed by a "halogen”, followed by the
”halogen, connected to an aromatic moiety”.

Placement -rules:

atom: "x" m
atom: "[Cl,Br,I]" mdq*
atom: "[Cl,Br,I]la" mqgx

group: "clcccccl" mdq *

22

Each atom rule starts with a "atom:” keyword, followed by a SMARTS pattern
in quotes, followed by multipole flags. The quotes around the SMARTS pattern
are mandatory. The multipole flags can be any combination of "m”, ”d”, ”q” and
”x” meaning a monopole, a dipole, a quadrupole and a symmetry restriction of
the quadrupole respectively. When a SMARTS match of an atom rule happens,
Electrostatic Tools programs will add the specified multipoles to the first atom
of the SMARTS pattern.

Group rules start with ”group:” keyword, followed by a SMARTS pattern in
quotes, followed by the multipole flags. The formatting and properties are
analogous the to atom rules. When a group SMARTS match happens, a program
will add a dummy atom center to the geometrical center of all SMARTS atoms
and place the specified multipoles on this dummy center. The dummy center
becomes connected with the first two atoms in the group’s SMARTS.

5.4 Multipole Molecule

The "mmol” format was designed to store molecules with associated multipoles.
It consists of the two sections: the molecule with atoms and bonds, and the
multipole orient rules part. The latter is described in the corresponding section
above. The molecule section contains ” Atom” and ”Bond” records.

Molecule:

Atom: 6 (1.1057, 0.0178, -0.0171)

Multipoles: (1.1057, 0.0178, -0.0171)
Monopole: -0.136

Atom: 8 (2.5213, 0.0064, -0.0264)
Multipoles: (2.5213, 0.0064, -0.0264)
Monopole: -0.26592
Dipole: (0, 0, =-0.4019)

Quadrupole: (-0.82922, 0, O, O, 1.0774, 0, O, 0, -0.24822)

Atom: 1 (0.7455, 0.9809, -0.3871)
Multipoles: (0.7455, 0.9809, -0.3871)
Monopole: 0.062576

Atom: 1 (0.7455, -0.1514, 1.0007)
Multipoles: (0.7455, -0.1514, 1.0007)
Monopole: 0.062576

Atom: 1 (0.7398, -0.7799, -0.6679)

Multipoles: (0.7398, -0.7799, -0.6679)
Monopole: 0.062576

Atom: 1 (2.8166, 0.7242, 0.5592)

Multipoles: (2.8166, 0.7242, 0.5592)
Monopole: 0.2142

Bond: 5 - 1 : 1

23

Bond: 3 - 1 1

Bond: 2 - 1 1

Bond: 2 - 6 1

Bond: 1 - 4 1

Orient-rules:

rule: z R

rule: a "[r#99]~ ['#99]"

rule: c "Lr#99] (T ['#99]1) ['#99]1"

The atom record starts with the ”Atom:” keyword followed by a nuclear charge
(a. u.) and nuclear coordinates in brackets, separated by a comma (in Angstroms).
Optionally it can contain a "Multipoles” field.

The ”"Multipoles” record starts with the "Multipoles:” keyword followed by
the coordinates of the expansion center in brackets, separated by a comma
(in Angstroms). Next, it contains three optional fields: a ”Monopole:”, a
"Dipole:” and a ”"Quadrupole:” records, followed by the corresponding mul-
tipole moment value (in a. u.). Tensor values are written in brackets with
components separated by a comma. A single "Multipoles” record has a single
internal coordinate system. The multipoles are written in terms of the principal
axes of the quadrupole. The orientation of the local coordinate frame is gov-
erned by the orient rules, recorded in its own section of file. We use the following
formulae to calculate the electrostatic potential from the multipoles:

¢ ®d TQT
YOt R R

, where 7 corresponds to radius-vector from the center of the multipole expan-
sion to a potential estimation point, g, and Q correspond to the charge, the
dipole moment vector and the quadrupole moment matrix, transformed to the
global coodinate frame.

The bond record starts with the "Bond:” keyword, followed by the first atom
index, followed by a "minus” sign, followed by the second atom index, followed
by a colon sign, followed by a bond order value: (717,727, 73” or "a” for single,
double, triple aromatic bonds respectively).

24

