
Electrostatic Tools Manual

Oleg I. Titov, Arslan R. Shaymardanov and Dmitry A. Shulga

2nd March 2021

1

Contents

1 About 3

2 Installation 4

3 Tutorial 6
3.1 Multipole Fit . 6
3.2 Multipole Placement . 10
3.3 Extra Points Placement . 11
3.4 Topology Equivalence . 13
3.5 Extra-Point Position Fit . 13
3.6 Converting MMol to Common Format 14
3.7 Multipole Charge Cluster (MCC) placement 15
3.8 Manually adding multipoles to the molecule 16
3.9 Copying multipoles to the molecule 17
3.10 Editing the .ESP files . 17
3.11 Coplex MEP RMSD estimations 17
3.12 Using Script Bindings . 18

4 Program Overview 20
4.1 General notes . 20
4.2 mult fitter . 20
4.3 ep fitter . 22
4.4 mmol2mol . 25
4.5 esp modifier . 27
4.6 mep rmsd . 28

5 Helper scripts 29
5.1 get eel.py . 29
5.2 get multipoles.py . 29

6 File Formats 31
6.1 General Notes . 31
6.2 Multipole Orient Rules . 31
6.3 Multipole Placement Rules . 32
6.4 Multipole Molecule . 33

7 Appendix 36
7.A Use of DCC (Extra-point) model within GAFF force field 36

7.A.1 Charges calculation . 36
7.A.2 Water molecule preparation 39
7.A.3 Force field parametes asignment 40
7.A.4 Preparation of mdgx input files 41
7.A.5 Energy calculation . 43

2

1 About

Electrostatic Tools is a program package that aims to assist in developing of
next-generation molecular electrostatic models with an enhanced molecular elec-
trostatic potential (MEP) anisotropy. It provides the researcher with tools to fit
and for work with customizable atomic multipole moments (up to a quadrupole)
and extra-point charges. The models obtained are intended to use for description
of an electrostatic part of such highly anisotropic moieties as oxygens, nitrogens
with lone pairs and heavy halogens (Cl, Br, I) for halogen bonding.

3

2 Installation

The basic installation requires a functioning C++ compiler and development
versions of all prerequisites installed. Electrostatic Tools currently depends
on:

• CMake is used to control the build and installation process

• OpenBabel library is used to read and write molecules in common chem-
ical formats and perform SMARTS pattern matching

• Eigen3 library provides linear algebra solvers

• boost is also required (with program_options binaries compiled)

• optional SWIG to build script bindings. Currently only Perl and Python
are supported

Common procedure for all cmake-based packages can be applied:

tar -xf electrostatic -tools -0.4.0. tar.bz2

cd electrostatic -tools -0.4.0

mkdir build

cd build

cmake ..

make

make install

One can be interested in the following options that can be passed to cmake:

• -DCMAKE_INSTALL_PREFIX=__prefix__ This tells cmake to install the pack-
age in the __prefix__ directory. Most would like to use something like
~/el_tools. The default is /usr/local.

• -DCMAKE_BUILD_TYPE=Release This will change build configuration to a
Release version meaning fast optimized executables. The other useful
option is RelWithDebInfo meaning the release-optimized executables with
a debugging info.

• -DET_NO_mult_fitter=ON/OFF, -DET_NO_ep_fitter=ON/OFF and -DET_NO_mmol2mol=ON/OFF

These switches turn off compilation and installation of the corresponding
programs. The defaults are OFF

• -DET_PERL_BINDINGS=ON/OFF and -DET_PYTHON_BINDINGS=ON/OFF These
switches turn off compilation and installation of the corresponding lan-
guage bindings.

• -DET_PERL_LIBDIR and -DET_PYTHON_LIBDIR Manually specify the des-
tination of language bindings.

• -DET_PERL_INCLUDE_PATH, -DET_PERL_LIBRARY, -DET_PYTHON_INCLUDE_PATH
and -DET_PYTHON_LIBRARY can be used to override cmake’s guesses.

For example if you want to install the release-optimized package in your home
directory, you don’t need Perl bindings and you want to install Python bindings
in subfolder in your home directory, you should call:

4

cmake -DCMAKE_BUILD_TYPE=Release \

-DCMAKE_INSTALL_PREFIX =~/ elec_tools \

-DET_PERL_BINDINGS=OFF \

-DET_PYTHON_LIBDIR =~/ elec_tools/lib \

..

To temporarly add Electrostatic Tools to a $PATH variable invoke:

export PATH=$PATH:__prefix__/bin

for bash shell, where __prefix__ is your installation prefix, or for csh shell:

setenv PATH $PATH:__prefix__/bin

To permanently add Electrostatic Tools to $PATH invoke:

echo "export PATH=$PATH:__prefix__/bin" >> ~/. bashrc

for bash shell, where __prefix__ is your installation prefix, or for csh shell:

echo "setenv PATH $PATH:__prefix__/bin" >> ~/. cshrc

5

3 Tutorial

In this section we will discuss the usage of our programs. Files used in this tuto-
rial are shipped with the source package in an examples directory. We assume
that the package is compiled, installed and added to $PATH. Every program in
Electrostatic Tools has a build-in help available with a --help switch.

3.1 Multipole Fit

To perform a multipole fit you will need a molecule structure in any common
file formats supported by OpenBabel and a reference electrostatic potential in
.esp format (used for a RESP-charges fitting within AmberTools package).
The sample files with a phenylbromide molecule (phbr.mol2) and the reference
RHF/6-31G* potential (phbr.esp) are located in the examples directory of the
source tree. We’ll make a temporary working directory and copy the files there
assuming that the source code was untarred in home directory.

mkdir ~/ tutorial

cd ~/ tutorial

cp ~/ electrostatic -tools -0.4.0/ examples/phbr.mol2 .

cp ~/ electrostatic -tools -0.4.0/ examples/phbr.esp .

To perform a simple fit with default parameters invoke:

mult_fitter phbr.mol2 phbr.esp

In case everything went well no console output appears. This command pre-
frormed the fit of atomic charges and multipoles of the phenylbromide molecule
to the reference MEP with default settings. Two files should appear in the
working directory: phbr.mmol and phbr.log. The first one contains the results
- a phenylbromide molecule with multipoles, the second one is a log with an
additional information describing the fit process. Your phbr.mmol file should
look like the following:

Molecule:

/* Atom 1 Br */

Atom: 35 (0.9991 , 0.0803 , 0.1295)

Multipoles: (0.9991 , 0.0803 , 0.1295)

Monopole: -0.18347

Quadrupole: (-0.81548 , 0, 0, 0, -0.81548 , 0, 0, 0, 1.631)

/* Atom 2 C */

Atom: 6 (2.882, 0.1014 , -0.0402)

Multipoles: (2.882 , 0.1014 , -0.0402)

Monopole: 0.27616

/* Atom 3 C */

Atom: 6 (3.5573 , 1.3195 , -0.1026)

Multipoles: (3.5573 , 1.3195 , -0.1026)

Monopole: -0.26482

6

/* Atom 4 C */

Atom: 6 (4.9466 , 1.3334 , -0.2343)

Multipoles: (4.9466 , 1.3334 , -0.2343)

Monopole: -0.11137

/* Atom 5 C */

Atom: 6 (5.6536 , 0.132, -0.3014)

Multipoles: (5.6536 , 0.132 , -0.3014)

Monopole: -0.15636

/* Atom 6 C */

Atom: 6 (4.9736 , -1.0845, -0.235)

Multipoles: (4.9736 , -1.0845, -0.235)

Monopole: -0.11137

/* Atom 7 C */

Atom: 6 (3.5842 , -1.1018, -0.1044)

Multipoles: (3.5842 , -1.1018, -0.1044)

Monopole: -0.26482

/* Atom 8 H */

Atom: 1 (3.0135 , 2.2588 , -0.0508)

Multipoles: (3.0135 , 2.2588 , -0.0508)

Monopole: 0.18885

/* Atom 9 H */

Atom: 1 (5.478, 2.2803 , -0.2855)

Multipoles: (5.478 , 2.2803 , -0.2855)

Monopole: 0.14652

/* Atom 10 H */

Atom: 1 (6.7358 , 0.1442 , -0.4058)

Multipoles: (6.7358 , 0.1442 , -0.4058)

Monopole: 0.14529

/* Atom 11 H */

Atom: 1 (5.5259 , -2.0194, -0.2859)

Multipoles: (5.5259 , -2.0194, -0.2859)

Monopole: 0.14652

/* Atom 12 H */

Atom: 1 (3.0612 , -2.0529, -0.0547)

Multipoles: (3.0612 , -2.0529, -0.0547)

Monopole: 0.18885

Bond: 1 - 2 : 1

Bond: 2 - 3 : a

Bond: 3 - 4 : a

Bond: 4 - 5 : a

7

Bond: 5 - 6 : a

Bond: 6 - 7 : a

Bond: 2 - 7 : a

Bond: 3 - 8 : 1

Bond: 4 - 9 : 1

Bond: 5 - 10 : 1

Bond: 6 - 11 : 1

Bond: 7 - 12 : 1

Orient -rules:

rule: z "*"

rule: a "[!#99]~[!#99]"

rule: a "[!#99]#[!#99]"

rule: b "[!#99]~[!#99]= ,@[!#99]"

rule: b "[!#99]=[!#99]~[!#99]"

rule: c "[!#99](~[!#99])~[!#99]"

rule: c "[!#99](= ,@[!#99])~[!#99]"

rule: d "[!#99]([!#99])([!#99])[!#99]"

rule: b "[!#99](=[!#99])([!#99])[!#99]"

rule: z "[!#99]([!#99])([!#99])([!#99])[!#99]"

rule: a "[!#99](=[!#99])=[!#99]"

rule: a "[!#99](=[!#99!#6])=[!#99]"

rule: b "[!#99](~[!#99])(=[!#99])=[!#99]"

rule: a "[#99]1[!#99]#[!#99]1"

rule: e "[#99]1[!#99A]([!#99])= ,@[!#99A]1"

rule: e "[#99]1[!#99] - ,= ,@[!#99]1"

/*

Fitted 15 parameters with 7 constraints (4617 reference points)

RMSD: 0.6277 kcal/mol

*/

It consists of three sections: the molecule description, the rules for orientation
of the multipoles and a comment.

We support C and C-style comments (/* comment */ // comment till the end of line)
in our custom file formats, so it is possible to store any relevant information di-
rectly in the file with a molecule. mult_fitter saves a fitted MEP description
error and a number of parameters with a number of applied constraints.

The molecule section consists of a description of atoms and bonds. The bond
format is intuitive. The atoms are stored as pairs of nucleus charges with co-
ordinates in Angstroms. Every atom may have a single multipole expansion
associated with it. The multipoles values are printed in atomic units. The
quadrupole matrix is printed in a row-by-row manner on a single line. Note
that the multipoles are shown in principal axes, so they can be easily anal-
ysed.

The contents of the phbr.log file should be as the following:

Multipole fitter v 0.4.0

8

MEP Fitter initialized.

Forcing tolopogical equivalency: 1

Tolopogical information will be recalculated: 0

Multipole refit requested: 0

Molecule with 12 atoms loaded.

19 atom and 0 group multipole positioning rules loaded.

4617 points of field loaded.

0 dummy atoms added.

Created distance matrix 4617 x15

Using SVD fitter.

Created constraints matrix 7x15

Fitting

Fit completed.

Fitted 15 parameters with 7 constraints (4617 reference points)

RMSD: 0.6277 kcal/mol

----------------- Constraints -----------------

Parameters: Z1 Qxx1 Qyy1 Qzz1 Z2 Z3

Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z11 Z12

Constraints matrix (B):

0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1

0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0

0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Constraints vecctor (C):

0

0

0

0

0

0

0

----------------- SVD analysis (after constraints applied) -----------------

Condition number cutoff: 1e+07

Condition number of the system: 110.373

Singular values:

5.88118

2.25861

1.44738

1.21205

0.482187

0.189836

0.0702794

0.0532848

1.29054e-15

...

Parameters: Z1 Qxx1 Qyy1 Qzz1 Z2 Z3

9

Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z11 Z12

Right singular vectors (V**T):

0.516804 0.00163018 0.00163018 -0.00326036 0.260875

0.140279 -0.144239 -0.294506 -0.144239 0.140279

0.254092 -0.240601 -0.502233 -0.240601 0.254092

0.642964 -0.00118616 -0.00118616 0.00237231 0.058724

-0.143181 -0.10988 0.149204 -0.10988 -0.143181

-0.238105 -0.206713 0.544868 -0.206713 -0.238105

...

Along with the details of the fit (including the actual constraints matrix) this file
contains a valuable information provided by a SVD fitter: the condition number
of a model matrix and a list of singular values with right singular vectors. In
this particular case the first shows that the charges and the quadrupole were
well-defined. The last two ones help analyse the system if any problem with the
fit stability occurs. The ”Parameters:” header and the ”V**T” matrix are tab
separated so they can be easily pasted in any spreadsheet processor for further
analysis.

If you try to rerun the calculation (note a different way to pass command line
arguments) it will terminate with the following error:

$mult_fitter -I phbr.mol2 -G phbr.esp -O phbr.mmol \

-L phbr.log

Error: output molecule file exists. Aborting.

No Electrostatic Tools program will overwrite existing files to preserve any pre-
vious results in case of a typo. To ignore this and overwrite the existing files
pass a -f key.

3.2 Multipole Placement

In the previuos example we used the default multipole placement policy. This
policy can be overriden by specifying a multipole placement rulefile. Let’s as-
sume we want to place a symmetric quadrupole on the bromine and a dipole on
the p-hydrogen atoms. Create a custom file with the rules and perform the fit
with these rules by invoking (note another way of passing the filenames):

cat > custom.rules << "EOF"

Placement -rules:

/* charge on any atom */

atom: "*" m

/* charge + symmetric quarupole on bromine */

atom: "[Br]" mqz

/* charge + dipole on p-hydrogen */

atom: "[#1] cccc[Br]" md

EOF

mult_fitter -Iphbr.mol2 -Gphbr.esp -p custom.rules \

-Ophbr.custom.mmol

10

phbr.custom.mmol contains the resulting molecule. The rulefile has a quite
simple syntax. We specify a SMARTS pattern of the desired atom (Note that
hydrogens are matched by "[#1]" and NOT "[H]") and a list of the required
multipoles: m, d and q for a monopole, a dipole and a quadrupole respectively.
The dipole and quadrupole may be modified with x, y or z to enforce the
symmetry along the selected axis. Additionaly, the dipole can be modified with
a v key followed by a vector, to direct the dipole along specified vector in the
local coordinate frame. Also note, that in versions prior to 0.4.0 the dipoles
were restricted along Z axis by default. To illustrate possible combinations we
provide the following example which contains a list of valid rules:

Placement -rules:

/* charge on any atom */

atom: "*" m

/* charge + quarupole symmetric along Z axis */

atom: "[Br]" mqz

/* charge + unrestricted dipole on p-hydrogen */

atom: "[#1] cccc[Br]" md

/* charge + dipole along the (1,1,0) vector + quadrupole symmetric along Z axis */

/* note that *==z for quadrupoles , however the usage of asterisks is not recommended */

atom: "[S]" mdvq* (1,1,0)

The patterns are matched in the same order as they go in the file. Each sub-
sequent rule overrides the previous ones, so the most general rules should go
before anything special. When no rulefile is specified the default, located in
__prefix__/share/electrostatic_tools/<version>/ placement.rules, is
used.

3.3 Extra Points Placement

Along with multtipole model, Extra Point (EP) model can be used. So-called
Extra Points are represented by virtual massles particles bearing partial charges.
EP model is capable of representing multipole moments as well as an implicit
multipole model (discussed below in ”Multipole Charge Cluster” section) but
bring some benefits such as higher flexibility and lower computational cost. The
combination of all molecule’ extra points is further referred to as Distributed
Charge Cluster (DCC). This section handles manual positioning of EPs while
automated (optimized) position adjustment of EP is discussed below in section
”Extra-Point Position Fit”.

Manual EP placement functional is accessible through mmol2mol utility. There
are few positioning rules, basically operating with vectors, calculated using spec-
ified atoms positions. Generally, each rule calculates sum of vector, normalizes
it and places EP on specified distance relative to pivot atom, using calculated
vector as an axis.

Specific formats of currently implemented rules are described below in dedi-
cated section. This section contains short example of EP placement for flu-
oro(methyl)amine. Original file and another useful examples can be found in
tests/p_place/ directory.

11

@<TRIPOS >MOLECULE

7 6 0 0 0

SMALL

GASTEIGER

@<TRIPOS >ATOM

1 N 1.0405 -0.0019 -0.0859 N.3 1 UNL1 -0.1617

2 C 0.5614 0.0270 -1.4566 C.3 1 UNL1 0.0147

3 F 2.4140 0.0148 -0.0521 F 1 UNL1 -0.1361

4 H 0.7045 -0.8510 0.3686 H 1 UNL1 0.1588

5 H 0.9113 0.9162 -1.9380 H 1 UNL1 0.0414

6 H -0.5085 0.0166 -1.4607 H 1 UNL1 0.0414

7 H 0.9285 -0.8305 -1.9809 H 1 UNL1 0.0414

@<TRIPOS >BOND

1 1 2 1

2 1 3 1

3 1 4 1

4 2 5 1

5 2 6 1

6 2 7 1

For example, to place External Point on position of nitrogen’ lone pair, one
could use following command:

mmol2mol -I NCFH.mol2 -O NCFH_ep_on_LP.mol2 \

--ep-place -on -bond "1 1 2 1 3 1 4 -1"

In this case, we select the 1st atom (nitrogen) as the coordinates origin. Then
we form an axis along sum of vectors, specified by difference of atoms coor-
dinates. In this case, those vectors are directed along the bonds, connecting
1st atom (nitrogen) with 2nd atom (carbon), 3rd atom (fluorine) and 4th atom
(hydrogen). Due to the selected order of atoms, the vectors sum is directed in
the direction opposite to Lone Pair of nutrogen; thus to adjust EP position we
specify negative distance (in Angstroms).

Command, listed above, should lead to the following result:

@<TRIPOS >MOLECULE

8 6 0 0 0

SMALL

GASTEIGER

@<TRIPOS >ATOM

1 N 1.0405 -0.0019 -0.0859 N.3 1 UNL1 0.0000

2 C 0.5614 0.0270 -1.4566 C.3 1 UNL1 0.0000

3 F 2.4140 0.0148 -0.0521 F 1 UNL1 0.0000

4 H 0.7045 -0.8510 0.3686 H 1 UNL1 0.0000

5 H 0.9113 0.9162 -1.9380 H 1 UNL1 0.0000

12

6 H -0.5085 0.0166 -1.4607 H 1 UNL1 0.0000

7 H 0.9285 -0.8305 -1.9809 H 1 UNL1 0.0000

8 XX 0.6968 0.8063 0.3924 Du 1 LIG1 0.0000

@<TRIPOS >BOND

1 1 2 1

2 1 3 1

3 1 4 1

4 2 5 1

5 2 6 1

6 2 7 1

3.4 Topology Equivalence

For this tutorial we will need the meoh.* files from the examples directory.

By default mult_fitter preserves topology equivalence so the equivalent atoms
get the equivalent charges and multipoles fitted. This behaviour can be over-
riden by a -b flag. For example we want to fit atomic charges for methanol
molecule without respect to its topology (namely the equivalence of hydrogen
atoms within the −CH3 group).

mult_fitter -I meoh.mol2 -G meoh.esp -O meoh.b.mmol \

-p m.rules -b

Note that we are using our custom multipole placement rules without any mul-
tipoles beyond monopole. The programs uses atomic charges as the source
of topological information. If two atoms of the same chemical element have
equal charges they are considered equivalent. By inspecting the meoh.mol2 and
meoh.b.mmol files one can check that however the input file had a topologically
symmetrical charges, the output does not. On the contrary, if an input molecule
has bad charges assigned, the topologically symmetric Gasteiger charges may
be recalculated with the -r key to enforce the charge (and multipole) symmetry
of the fit:

mult_fitter -I meoh.mulliken.mol2 -G meoh.esp \

-O meoh.r.mmol -p m.rules -r

Another utility, ep_fitter, allows user to manually set equality constraints,
using --constraint option (see section 4 for option description).

3.5 Extra-Point Position Fit

The ep-fitter program is used to perform the optimization of the extra-point
(EP) positions. It places extra-points at atoms specified with SMARTS mask.
We will call these atoms EP-hosts. Lets perform the EP position optimizaion
for a m-fluorobrombenzene which is saved in mol36.mol2 and mol36.esp files in
the examples directory. We’ll place the extra-points on the bromine atom and
use a charge-only rulefile which can be found in the examples directory.

13

ep_fitter -I mol36.mol2 -G mol36.esp -p m.rules \

-M"[Br]"

The output was saved to the mol36.ep.mmol and mol36.ep.log files. The
program places the EP on the local Z-axis of the atom, defined by the orient
rules, and then searches for the position with the lowest MEP RMSD value. The
optimization tooks more time than a simple charge fit since it uses the Nelder-
Mead simplex algorith for the position optimization with the charge refit at
every step. The program saves the EP as the atom with a zero nuclear charge
meaning a dummy, nonexistent, atom.

The use of the Nelder-Mead algorithm looks strange when dealing with a single
parameter optimization, however we can optimize several EP centers simulta-
neously. Lets try to add extra-points to the both bromine and fluorine, This
time we will need to increase a maximum iteration limit for the optimization
to converge. We have also switched to a faster charge fitting algorithm to save
some time. Additionally we specified a different file for the output.

ep_fitter -I mol36.mol2 -G mol36.esp -p m.rules \

-M"[Br]" -M"[F]" -a FullPivLU -m 150 \

-O mol36.2ep.mmol

If you investigate the result you will notice, that the EP-Br distance converged
to 1.3 Å, while the EP-F distance became -5 Å. The negative value of the
distance means that EP has penetrated its host atom and traversed inside the
molecule. In this case, -5 Åactually means that it traversed the whole molecule
and stopped at the reference grid border. This behaviour is normal for fluorines
since they do not need any special anisotropy treatment.

One more thing should be mentioned about the EP position optimization pos-
sibilities. Since we’re using the same code for the charge fitting, it is possible to
fit simultaneously both multipoles and EP positions (with the relevant place-
ment rules set). It is even possible to place multipoles on the extra-point centers
and optimize their positions, however note, that internally EPs are stored as
Einsteinium ("[#99]", because matching "[#0]" doesnot work). When the mul-
tipole placement rules tell the fitter to add the multipoles on the EP-host atom
it ignores this rule, leaving the host with charge only, however this behaviuor
can be overriden by the -k switch.

3.6 Converting MMol to Common Format

After we fitted the charges or multipoles, we can convert the resulting .mmol

file into any common chemical file format supported by OpenBabel with the
mmol2mol program. Try this:

mmol2mol phbr.mmol

By default it strips all multipoles and saves the molecule as a TRIPOS MOL2

file, but this behaviour can be overriden with the -O and -t flags to change the
output file and its format if automatic extention based guessing fails. You can
also try MCC conversion options to preserve multipole data, however this part
is still under research and is subject to change.

14

3.7 Multipole Charge Cluster (MCC) placement

Actually the mmol2mol is not a simple file format converter. It can not only
strip (or add or copy) the multipoles present in the molecule, but also convert
them to multipole charge cluster - a set of point charges, located very close to
the host atom to simulate the original multipoles. mmol2mol adds from 2 to
6 extra-points per one host (depends on the multipole expansion symmetry),
connected with single bonds to the central host atom. The MCC conversion
algorithms are turned on with a -M key which specifies the SMARTS masks
of atoms which multipoles shoud be converted to MCCs, for example, if you
already have a phbr.mmol file from the mult_fitter tutorial:

mmol2mol -I phbr.mmol -M"[Br]"

This command will create a phbr.mcc.mol2 file with the following contents
(note the increased atomic charge of bromine atom and two additional dummy
atoms):

@<TRIPOS >MOLECULE

14 14 0 0 0

SMALL

GASTEIGER

@<TRIPOS >ATOM

1 BR 0.9991 0.0803 0.1295 Br

1 LIG1 -45.8550

2 C 2.8820 0.1014 -0.0402 C.ar

1 LIG1 0.2762

3 C 3.5573 1.3195 -0.1026 C.ar

1 LIG1 -0.2648

4 C 4.9466 1.3334 -0.2343 C.ar

1 LIG1 -0.1114

5 C 5.6536 0.1320 -0.3014 C.ar

1 LIG1 -0.1564

6 C 4.9736 -1.0845 -0.2350 C.ar

1 LIG1 -0.1114

7 C 3.5842 -1.1018 -0.1044 C.ar

1 LIG1 -0.2648

8 H 3.0135 2.2588 -0.0508 H

1 LIG1 0.1888

9 H 5.4780 2.2803 -0.2855 H

1 LIG1 0.1465

10 H 6.7358 0.1442 -0.4058 H

1 LIG1 0.1453

11 H 5.5259 -2.0194 -0.2859 H

1 LIG1 0.1465

12 H 3.0612 -2.0529 -0.0547 H

1 LIG1 0.1888

13 XX 0.8995 0.0792 0.1385 Du

1 LIG1 22.8358

15

14 XX 1.0987 0.0814 0.1205 Du

1 LIG1 22.8358

@<TRIPOS >BOND

1 1 2 1

2 2 3 ar

3 3 4 ar

4 4 5 ar

5 5 6 ar

6 6 7 ar

7 2 7 ar

8 3 8 1

9 4 9 1

10 5 10 1

11 6 11 1

12 7 12 1

13 1 13 1

14 1 14 1

Multiple -M keys are possible. By default the MCC has the radius of 0.1 Å,
however it can be overriden with an -r key. You can also tell the mmol2mol to
ignore some parts of multipole expansion with -d and -q keys for dipole and
quadrupole (-dq will strip all multipoles).

3.8 Manually adding multipoles to the molecule

The mmol2mol can also place multipoles on atoms. This behaviour is turned
on with -C, -D and -Q keywords for monopole, dipole and quadrupole. The
argument to this keywords are little complicated. You have provide a string
surrounded by single (’’) or double ("") quotes. This string should contain a
SMARTS pattern of the host atom, followed by one or several values, specifying
the multipole moment value (in a. u.). For atomic charge you’ll obviuosly
need a single value. The dipole can be specified with 3 values, or with a single
value, which is treated as Zth component of the dipole. The quadrupole can be
specified as Qzz (for symmetric one), or as Qxx, Qyy and Qzz triplet (however
no checks are made for the zero-trace condition!), or as Qxx, Qyy, Qzz, Qxy,
Qxz and Qyz set of values. For example, to add a quadrupole to the bromine
atom in PhBr molecule issue:

mmol2mol phbr.mol2 -O phbr.quad.mmol \

-Q"[Br] 1.0 2.0 -3.0"

This command will create a file phbr.quad.mmol with a quadrupole on bromine
atom. You can also specify multiple number of -C, -D and -Q keys.

You can also add multipoles and convert them to MCC simultaneously. mmol2mol
first performs all multipole modifications requested, then converts the needed
ones to MCC. Try this command:

mmol2mol phbr.mol2 -O phbr.manual.mol2 \

-Q"[Br] 1.0 2.0 -3.0" -M"[Br]"

16

3.9 Copying multipoles to the molecule

There is another possibility to modify the multipoles with the mmol2mol pro-
gram. One can copy the multipoles from another file or files (useful for molecular
complexes stored in single file) with a --copy-multipoles key. The multipoles
are copied directly with no checks applied. The only thing preserved is the order
of atoms in the source and input file. The input file serves as the source of atoms
and bonds, while the source file is used to get the multipoles. No multipoles in
the input file are preserved. You may use multiple --copy-multipoles keys to
copy from several sources. In this case the ordering of files also matters.

3.10 Editing the .ESP files

The Electrostatic Tools also include an esp_modifier program. It’s main
purpose to modify the electrostatip potential maps by adding or removing po-
tential generated by molecules. For example we want (1) to fit the multipoles
for PhBr molecule, (2) fit the RESP charges without Br’s quadrupole and then
(3) add this quadrupole back to Br atom.

The first step is described above in the mult_fitter tutorial, however we can re-
peat it here (This should display the fitted quadrupole of bromine atom):

mult_fitter phbr.mol2 phbr.esp

grep ’Quadrupole ’ phbr.mmol

For the second step we need to prepare the .esp file without quadrupole on
Br. The esp_modifier can substract the potential of the whole molecule, so
we need to prepare a special PhBr with no charges, just quadrupole:

mmol2mol phbr.mmol -C"* 0" \

-O phbr.q_only.mmol

Next, substract this molecule’s potential from .esp file:

esp_modifier phbr.esp phbr.no_q.esp \

-R phbr.q_only.mmol

The -R flag removes molecule’s potential from the .ESP file, while -A flag add
the potential. Multiple -R and -A keys are possible in one command.

Now you can use your favourite RESP fitting tool to fit the charges for the
molecule with the modified grid file. Assuming that you obtained a phbr.resp.mol2
file with the RESP charges, you can add the quadrupole back with:

mmol2mol phbr.resp.mol2 -Q"[Br] $(grep Quadrupole phbr.mmol | awk ’{print $11}’)" \

-O phbr.resp_with_q.mmol

3.11 Coplex MEP RMSD estimations

The Electrostatic Tools also include an mep_rmsd program. This program
is used for complex MEP error calculations. To get the MEP error issue the
following :

17

mep_rmsd -m phbr.mmol -g phbr.esp

The result is pretty self explanatory:

phbr.mmol : 0.62615 kcal/mol*e ; N = 4617

Instead of batch error estimation, you also can also get the MEP error in selected
region of the molecule. This behaviuor is controlled with -M key followed by a
triplet of central atom SMARTS, minimum angle between any chemical bond
and vector to MEP point (in degrees), and maximum distance to the MEP
point. By default (if only a SMARTS is given), the angle is set to 90◦ and the
distance is unlimited so the error is estimated inside the hemisphere around the
central atom ”outside” the molecule.

In case multiple -M keys are specified, the regions of error estimation are joined.
The program also accepts multiple input and grid files for batch estimations. In
this case the number of molecule files should correspond to the number of grid
files.

The following example will estimate the error in the hemisphere with the radius
of 4Å around the halogen atom in phenylbromide.

mep_rmsd -m phbr.mmol -g phbr.esp \

-M"[Br] 90 4"

3.12 Using Script Bindings

To analyse fit results you can also use script language bindings. Unfortunately
currently we do not provide any reference documentation, so you’ll have to look
into source code for reference. We’ll provide a simple example python script
here. This script uses the phbr.mmol file generated earlier in this tutorial.

import openbabel

import ElectrostaticTools

read molecule with multipole support from file

mol = ElectrostaticTools.GeneralMultipoledMolecule ()

mol.readMe("phbr.mmol")

save it as MOL2

note: GeneralMultipoledMolecule is OBMol subclass

so we can use any OpenBabel API

conv = openbabel.OBConversion ()

conv.SetOutFormat("mol2")

conv.WriteFile(mol , "test.mol2")

we can iterate other the atoms

for atom in openbabel.OBMolAtomIter(mol):

print (atom.GetAtomicNum ())

18

print molecule in MMOL format

print (mol.toString ())

check if multipole expansion exists on the first

atom and print the monopole and quadrupole value

if (mol.hasMultipoles (1)) :

mult = mol.GetRawMultipoles (1)

if (mult.hasMonopole ()) :

print ("\nMonopole value: ",

mult.monopole (). value ())

if (mult.hasQuadrupole ()) :

print ("\nMonopole value: ",

mult.quadrupole (). value (). toString ())

or simply print the expansion as is

print ("\nMultipoles on the first atom:")

print (mult.toString ())

or we can get oriented multipoles

print ("\nOriented multipole on the first atom:")

print (mol.GetMultipoles (1). toString ())

or we can get raw multipoles from atom

mult = ElectrostaticTools.Multipoles(

mol.GetAtom (2). GetData("Multipoles")

)

print ("\nMultipoles from atom:")

print (mult.toString ())

19

4 Program Overview

4.1 General notes

All programs included in the package are non-interactive command line tools,
written with UNIX philosophy in mind – they are silent if everything is going
fine, however some noncritical messages can be logged. All tasks are formulated
with command line arguments. Thanks to the boost::program_options li-
brary there are several ways to pass an argument to the program. The following
invocations are identical:

progname --long -option arg

progname --long -option=arg

progname -l arg

progname -larg

However some constructions are NOT available, such as:

progname --no-long -option

progname --with -long -option

progname --disable -long -option

etc ...

progname -l=arg

Some arguments are considered essential for the program execution and can
be specified without a key. In this case the order of such keyless options is
important. For example:

mult_fitter molecule.mol2 grid.esp

is fine

mult_fitter molecule.mol2 grid.esp -f

is fine

mult_fitter -c 1e9 molecule.mol2 grid.esp

is fine

mult_fitter grid.esp molecule.mol2

will terminate with an error

4.2 mult fitter

The mult_fitter program performs fitting of the atom-centered multipoles to
the specified reference molecular electrostatic potential (MEP). The MEP is
specified in a form of AMBER .esp file. The input molecule can be specified
in any chemical format understood by the OpenBabel library. The result is
saved into our plan-text .mmol file format. Multipole positioning is controlled
by SMARTS patterns which are read from a separate file. The multipoles are
fixed in the orientation regarding the neighboring atoms which is controlled
through another file. It is possible to constrain the topological equivalence of
atoms (which can be precisely controlled) and the symmetry of quadrupoles.
Addition of dummy multipole centers in the geometrical center of atom groups
specified by a SMARTS pattern is also possible.

20

Some of possible invocation patterns:

mult_fitter <input > <MEP .esp > [output] [options]

mult_fitter -I <input > -G <MEP .esp > -O <output > \

[options]

Generic options:

−−version print the program name and version and exit.

−−help print a help message to console and exit.

Input control:

−I, −−input < arg > required an input molecule file. This parameter is also
read as the first argument without a key, so the key can be omitted.

−t, −−filetype < arg > an input molecule file type specified as common ex-
tenson for this filetype. Generally the filetype is guessed by the file exten-
sion (GUESS option). This key overrides this guess.

−G, −−grid < arg > required a reference MEP in the .esp format. This
parameter is also read as the second argument without a key, so the key
can be omitted. Atomic coordinates in the .esp files are ignored, but the
total charge is used as a constraint in the fitting procedure.

−p, −−placement-rules < arg > multipole placement rules specified in spe-
cial format. The multipoles are placed according to SMARTS patterns.
Note that OpenBabel SMARTS are different from Daylight SMARTS
(see http://openbabel.org/wiki/SMARTS). See the format description for
more info on how to setup custom rules.

−o, −−orient-rules < arg > multipole orient rules. The multipoles are placed
according to SMARTS patterns. Note that OpenBabel SMARTS are dif-
ferent from Daylight SMARTS (see http://openbabel.org/wiki/SMARTS).
See the format description for more info on how to setup custom rules.

Output control:

−O, −−output < arg > an output molecule file. This parameter is also read
as the third argument without a key, so the key can be omitted. The
default name is generated by replacing the last file extension from the
input file name with mmol. In order to save previous results, the program
will terminate if the output file exists. The molecule is saved in a custom
plain-text format which was designed to support atomic multipoles. See
the format description for more info.

−L, −−log < arg > a log file. The default name is generated by replacing
the last file extension from the input file name with the log. In order to
save previous results, the program will terminate if the log file exists. The
log contains important information about program workflow and some fit
data. It is saved as a plain-text.

−f, −−force-output a switch to overwrite the output and log files if they are
already present.

MEP fit control:

21

−a, −−algorithm < arg > a MEP fit algorithm selector. Valid values are:
SVD, LLT, LDLT, PartialPivLU, FullPivLU, HouseholderQR, ColPivHouseholderQR,
FullPivHouseholderQR. The SVD algorithm uses the method published
by Sigfridson and Ryde (J. Comput. Chem. 1998, 19 (4), 377). It works
with a model matrix without raising it to the power of two, thus increasing
the stability of the fit. The other methods deal with the squared model
matrix and a Lagrange constraints. The details about them can be found
in Eigen3 documentation.

−c, −−cutoff < arg > a condition value cutoff (the largest singular value di-
vided by the smallest one) used in the SVD pseudoinversion procedures to
eliminate statistical noise. This parameter is used only when fitting with
the SVD fitter. The default value is 107.

−r, −−recalculate-topology a flag to force fitter to recalculate atomic charges
used to force the equivalency of the topologically equivalent atoms. The
atoms are forced to have equal charges and multipoles if they belong to
the same chemical element and have the equal partial charges assigned.
If this flag is set, the Gasteiger charges are calculated and used for this
purpose since they are topologically symmetrical. Note that sometimes
there are not enouth digits in a charge field of the input molecule file
and non-equivalent charges have the same charge, for example meta- and
para- hydrogens and sometimes carbons in monosubstituted benzenes in
the MOL2 file format. Generally turning on this flag is a good idea if you
are not controlling your input charges manually.

−b, −−break-equivalency a flag to disable the equivalency constraints. The
only constraints added with this flag is total charge and quadrupole sym-
metry constraints.

−−refit a flag that changes default fit behaviuor. When this flag is set the
mult_fitter will fit the multipoles, specified in the placement rule file,
while saving the other multipoles present in the molecule, but not opti-
mized in the current run. Without this flag these extra multipoles will
be set to zero. The flag allows to fit the multipoles with respect to the
present charges, e.g. to add quadrupoles, optimal for the RESP charges.

4.3 ep fitter

The ep_fitter program fits the extra-point (EP) charge positions and atom-
centered multipoles with the specified reference molecular electrostatic potential
(MEP). The MEP is specified in a form of AMBER .esp file. The input molecule
can be specified in any chemical format understood by the OpenBabel library.
The result is saved into our plan-text .mmol file format. Multipole positioning
is controlled by SMARTS patterns which are read from a separate file. The
multipoles are fixed in the orientation regarding the neighboring atoms which
is controlled through another file. It is possible to constrain the topological
equivalence of atoms (which can be precisely controlled) and the symmetry of
quadrupoles. Addition of dummy multipole centers in the geometrical center of
atom groups specified by a SMARTS pattern is also possible. The extra-points
are added to the host atoms specified by SMARTS patterns.

22

This program uses the same code as the mult_fitter for multipole and charge
fitting so most of the options are exactly the same, however all options are
provided here for consistency. The nonlocal EP position optimization runs on
top of the linear charge and multipole fitting. The Nelder-Mead simplex search
local optimization algorithm is used for this purpose.

Some of the possible invocation patterns:

ep_fitter <input > <MEP .esp > -M"[Cl,Br,I]" \

[output] [options]

ep_fitter -I <input > -G <MEP .esp > -O <output > \

-M"[Cl ,Br ,I]" [options]

Generic options:

−−version print the program name and version and exit.

−−help print a help message to console and exit.

Input control:

−I, −−input < arg > required an input molecule file. This parameter is also
read as the first argument without a key, so the key can be omitted.

−t, −−filetype < arg > an input molecule file type specified as common ex-
tenson for this filetype. Generally the filetype is guessed by the file exten-
sion (GUESS option). This key overrides this guess.

−G, −−grid < arg > required a reference MEP in the .esp format. This
parameter is also read as the second argument without a key, so the key
can be omitted. Atomic coordinates in the .esp files are ignored, but the
total charge is used as a constraint in the fitting procedure.

−p, −−placement-rules < arg > multipole placement rules specified in spe-
cial format. The multipoles are placed according to SMARTS patterns.
Note that OpenBabel SMARTS are different from Daylight SMARTS
(see http://openbabel.org/wiki/SMARTS). See the format description for
more info on how to setup custom rules.

−o, −−orient-rules < arg > multipole orient rules. The multipoles are placed
according to SMARTS patterns. Note that OpenBabel SMARTS are dif-
ferent from Daylight SMARTS (see http://openbabel.org/wiki/SMARTS).
See the format description for more info on how to setup custom rules.

Output control:

−O, −−output < arg > an output molecule file. This parameter is also read
as the third argument without a key, so the key can be omitted. The
default name is generated by replacing the last file extension from the
input file name with mmol. In order to save previous results, the program
will terminate if the output file exists. The molecule is saved in a custom
plain-text format which was designed to support atomic multipoles. See
the format description for more info.

−L, −−log < arg > a log file. The default name is generated by replacing
the last file extension from the input file name with the log. In order to

23

save previous results, the program will terminate if the log file exists. The
log contains important information about program workflow and some fit
data. It is saved as a plain-text.

−f, −−force-output a switch to overwrite the output and log files if they are
already present.

MEP fit control:

−a, −−algorithm < arg > a MEP fit algorithm selector. Valid values are:
SVD, LLT, LDLT, PartialPivLU, FullPivLU, HouseholderQR, ColPivHouseholderQR,
FullPivHouseholderQR. The SVD algorithm uses the method published
by Sigfridson and Ryde (J. Comput. Chem. 1998, 19 (4), 377). It works
with a model matrix without raising it to the power of two, thus increasing
the stability of the fit. The other methods deal with the squared model
matrix and a Lagrange constraints. The details about them can be found
in Eigen3 documentation.

−c, −−cutoff < arg > a condition value cutoff (the largest singular value di-
vided by the smallest one) used in the SVD pseudoinversion procedures to
eliminate statistical noise. This parameter is used only when fitting with
the SVD fitter. The default value is 107.

−r, −−recalculate-topology a flag to force fitter to recalculate atomic charges
used to force the equivalency of the topologically equivalent atoms. The
atoms are forced to have equal charges and multipoles if they belong to
the same chemical element and have the equal partial charges assigned.
If this flag is set, the Gasteiger charges are calculated and used for this
purpose since they are topologically symmetrical. Note that sometimes
there are not enouth digits in a charge field of the input molecule file
and non-equivalent charges have the same charge, for example meta- and
para- hydrogens and sometimes carbons in monosubstituted benzenes in
the MOL2 file format. Generally turning on this flag is a good idea if you
are not controlling your input charges manually.

−b, −−break-equivalency a flag to disable the equivalency constraints. The
only constraints added with this flag is total charge and quadrupole sym-
metry constraints.

EP position fit control:

−M, −−host-mask < arg > the SMARTS mask of the EP host atoms. The
key is repeatable so multiple masks can be specified. The EP is placed on
the local Z-axis specified by the orientation rules and it is ensured that the
EP is located ”outside” of the molecule. By default the multipoles, placed
on the EP hosts are removed, since it’s strange to have two anisotropic
enhancements for a single atom.

−x, −−fixed-position < arg > fixed EP distance from halogen atom in Angstroms.
No optimization will be applied. Overrides any optimization option.

−d, −−init-position < arg > the initial distance between EP and its host
atom in Angstroms for optimization procedure. The default value is 1.5
Å.

24

−s, −−init-step < arg > the initial step of EP-host distance in Angstroms
for the optimization procedure. Positive values mean the increase of the
distance while the negative ones mean the decrease. The default value is
0.1 Å.

−e, −−precision < arg > a required position precision in Angstroms. Short
name is abbreviated from the word ”epsilon”. Technically, this is a maxi-
mum simplex radius. The default value is 10−3 Å.

−m, −−max-steps < arg > the maximum number of optimization steps. The
search is stopped at this point and the failure is reported in log. The de-
fault value is 100.

−k, −−keep-multipoles a flag to override removal of multipoles from EP
hosts.

−−constraints ”1 0 1 ...” ”1 0 1 0 ...”Vector of constraints similar to that
in the log file. (Currently only SVD fitter supported)

4.4 mmol2mol

The mmol2mol preforms conversion between mmol format and the other common
chemical formats with respect to atomic multipoles. It can also modify multipole
values per request on the atoms specified and convert multipoles to multipole
charge clusters (MCCs).

Some of possible invocation patterns:

mmol2mol <options >

mmol2mol <in_mol > <out_mol > [options]

Generic options:

−−version print the program name and version and exit.

−−help print help message to console and exit.

Input control:

−I, −−input < arg > required an input molecule file in the .mmol format.
This parameter is also read as the first argument without a key, so the
key can be omitted.

−−input−type < arg > an input molecule file type specified as common ex-
tenson for this filetype. Generally the filetype is guessed by the file exten-
sion (GUESS option). This key overrides this guess.

−o, −−orient-rules < arg > multipole orient rules. The multipoles are placed
according to SMARTS patterns. Note that OpenBabel SMARTS are dif-
ferent from Daylight SMARTS (see http://openbabel.org/wiki/SMARTS).
See the format description for more info on how to setup custom rules.

Output control:

−O, −−output < arg > an output molecule file. This parameter is also read
as the second argument without a key, so the key can be omitted. The

25

default name is generated by replacing the last file extension from the input
file name with ”mol2” and the molecule is saved in a TRIPOS MOL2 file
format. In order to save the previous results, the program will terminate
if the output file exists.

−t, −−output-type < arg > an output molecule filetype, specified as a com-
mon extenson for this filetype. Generally the filetype is guessed by the
output file extension (”GUESS” option). This key overrides this guess.

−f, −−force-output a switch to overwrite the output files if it is already
present.

Multipole modification control:

−−copy-multipoles < arg > a list of molecule files, used as a source for mul-
tipoles. When this flag is specified, the program will combine the input
molecule file (a source of atom types and coordinates) with the source
of multipoles overriding the multipoles in the input molecule. Note, that
this behaviuor is dependent on the order of the atoms only. No additional
chackes are applied.

−C, −−set-charge < arg > a pair of SMARTS mask and a charge value (a.u.)
to assing on a given SMARTS pattern. Note that you must use quotes
around this pair.

−D, −−set-dipole < arg > a pair of SMARTS mask and a dipole value (a.u.)
to assing on a given SMARTS pattern. Note that you must use quotes
around this pair. A dipole can be specified as three values for each vector
component, or as a single dz value.

−Q, −−set-quadrupole < arg > a pair of SMARTS mask and a quadrupole
value (a.u.) to assing on a given SMARTS pattern. Note that you must use
quotes around this pair. A quadrupole can be specified as a six component
vector for Qxx, Qyy, Qzz, Qxy, Qxz and Qyz, or as a three component
vector for Qxx, Qyy and Qzz, or as a single Qzz value.

−−add-charge < arg > the same as $--$set-charge but adds the charge
value to the existing one instead of overriding it.

−−add-dipole < arg > the same as $--$set-dipole but adds the dipole value
to the existing one instead of overriding it.

−−add-quadrupole < arg > the same as $--$set-quadrupole but adds the
quadrupole value to the existing one instead of overriding it.

Conversion control:

−M, −−mcc-mask < arg > the multipoles on the atoms matching this mask
will be substituted by a multipole charge cluster (MCC). This cluster is
composed of a set of several extra-point charges (2-6) and in combination
with the charge of the host atom creates a MEP distribution, analogous
to the multipolar one. The key is repeatable so multiple masks can be
specified.

−r, −−radius < arg > the MCC radius in Angstroms as the distance between
the host atom and the extra-points. The default is 0.1 Å.

26

−d, −−ignore-dipole do not convert atomic dipoles to the MCC.

−d, −−ignore-quadrupole do not convert atomic quadrupoles to the MCC.

EP placement control:

It should be noted that the #atom has the meaning of the atom id in the original
file; #pivot atom serves as axis origin and as a host for EP and may be bonded
to the latter using special option.

−−ep−host−mask not currently supported

−−ep−fixed−position < arg > sets a default value for distance between EP
and a pivot atom

−−ep−place−on−bond ”#pivot atom #atom1 #atom2 [#atom3 #atom4
[...] [distance]” calculates axis as a sum of vectors directed along the pairs
of specified atoms

−−ep−place−on−bisector ”#pivot atom #atom(A1) #atom(B1) #atom(C1)
[#atom(A2) #atom(B2) #atom(C2) [...]] [distance]” calculates axis as
a sum of vectors directed along the bisectors of BAC angles, formed by
specified atoms

−−ep−place−on−normal ”#pivot atom #atom1 #atom2 #atom3 [distance]”
calculates direction vector as a normal to the plane, specified by three
atoms

−−ep−place−on−xyz ”#pivot atom x y z” places EP at specified cartesian
coordinates

−−ep−default−charge < arg > set a default charge value for newly added
EP

−−ep−bind form a chemical bind between EP and corresponding pivot atoms

4.5 esp modifier

The esp_modifier program converts .mmol files to common chemical formats
with respect to the atomic multipoles in these files.

Some of possible invocation patterns:

esp_modifier <options >

esp_modifier <in_esp > <out_esp > [options]

Generic options:

−−version print the program name and version and exit.

−−help print help message to console and exit.

Input control:

−I, −−input < arg > required an input molecular electrostatic potential file
in ESP format. This parameter is also read as the first argument without
a key, so the key can be omitted.

27

−A, −−add < arg > a molecule, which potential is to be added to the ESP

file. Multiple keys are possible.

−R, −−remove < arg > a molecule, which potential is to be removed from
the ESP file. Multiple keys are possible.

−c, −−coordinates < arg > a molecule, which atomic coordinates are to re-
place ones in the ESP file.

Output control:

−O, −−output < arg > an output ESP file. This parameter is also read as
the second argument without a key, so the key can be omitted.

−f, −−force-output a switch to overwrite the output files if it is already
present.

4.6 mep rmsd

The mep_rmsd program estimates the MEP reproduction error on the grid or
it’s subset.

Some of possible invocation patterns:

mep_rmsd <options >

Input control:

−m, −−molecules < arg > required input molecule files for MEP error es-
timation in any format.

−g, −−grids < arg > required input grid files for MEP error estimation in
ESP format. The number of grid files must match the number of molecule
files.

−M, −−mask < arg > a mask used to create a grid subset. Consists of a
triplet of a SMARTS pattern, a minimum angle (in degrees) between any
of the bonds of the first SMARTS atom and the vector to the grid point,
and a maximum distance from the first SMARTS atom and the grid point.
Multiple masks are possible. In case of multiple masks or multiple atoms
matching a single mask the MEP error is estimated on a union of the corre-
sponding subsets. tem[−−no-coordinates-check < arg >] a flag to prevent
checking the equality of atomic coordinates in the grid and molecule files.
Do not use it unless completely sure it is needed.

28

5 Helper scripts

Since verson 0.4.0 we also provide a set of useful Python (Python3 but should
be easily modified for Python2) scripts written with the help of Electrostatic
Tools API. The scripts are NOT installed with make install command and
are located in the scripts directory. Feel free to copy and use them.

5.1 get eel.py

The get_eel.py script calculates intra- and intermolecular electrostatic inter-
action energies for molecules in mmol format and prints them to the console
(in kcal/mol). The intermolecular interactions are calculated as interaction of
selected molecule with the field of other molecules. In case of correct execu-
tion it should print 2N real numbers, where N is the number of molecule files
supplied.

Some of possible invocation patterns:

get_eel.py -M <molfile1 > .. <molfileN > \

<options >

Arguments:

−h, −−help print help message to console and exit.

−I, −−input < arg(s) > required input molecule file(s). Unlimited number
of files possible.

−−weight-1-2 weight for the scaling of the 1-2 intramolecular interactions.
The default value is 0.

−−weight-1-3 weight for the scaling of the 1-3 intramolecular interactions.
The default value is 0.

−−weight-1-2 weight for the scaling of the 1-4 intramolecular interactions.
The default value is 1/1.2 (AMBER default).

−−weight-intra weight for the scaling of all the intramolecular interactions
(including the 1-2, 1-3, and 1-4 ones). The default value is 1.

−−weight-inter weight for the scaling of all the intermolecular interactions.
The default value is 1.

5.2 get multipoles.py

The get_multipoles.py script extracts multipoles for an atom specified by
SMARTS pattern from a mmol file. Although the mmol files are often can be
parsed with standard console tools such as head, tail, grep, awk, etc. in case
of complicated molecules actual SMARTS matching can be very helpful.

Some of possible invocation patterns:

29

get_multipoles.py -M <molfile1 > .. \

<molfileN > \

<options >

Arguments:

−h, −−help print help message to console and exit.

−I, −−input < arg(s) > required input molecule file(s). Unlimited number
of files possible.

−M, −−mask < arg > required SMARTS atom mask to select the atom of
interest.

−m, −−monopole print atomic charge.

−d, −−dipole print atomic dipole vector.

−−dx print the dx component of the atomic dipole.

−−dy print the dy component of the atomic dipole.

−−dz print the dz component of the atomic dipole.

−q, −−quadrupole print atomic quadrupole matrix (9 elements).

−−qxx print the Qxx component of the atomic quadrupole.

−−qyy print the Qyy component of the atomic quadrupole.

−−qzz print the Qzz component of the atomic quadrupole.

−b, −−fill-blanks < arg > if no multipole found fill the blank space with the
string specified (off by default; ”0” if use without an argument).

−−no-header do not print the header.

30

6 File Formats

6.1 General Notes

All the following file formats support C-style comments (/* comment */) as well
as C++-style comments (// comment till the end of line) so any addi-
tional information can be stored next to the data in an arbitrary format. The
comment parsers are not very smart so do not nest your comments. The spaces,
newlines and tabulation characters are ignored, so a fancy text alighning can
be achieved. We prefer to save SMARTS patterns in quotes. These quotes are
required by the format, so we can check that a pattern was specified and we’re
not reading something different.

The files are separated in sections. Every section starts with a header ending
with a colon sign and ends with the beginning of the next section.

6.2 Multipole Orient Rules

Multipole orient rules controls the orientation of a local coordinate frame for
each atom. The rules start with a common ”Orient-rules:” header and con-
tain records of individual rules. The records are passed from top to bottom,
with the latter overriding the former, so the ordering is important. The first
one should be something general with very specific ones at the bottom of the
list.

Orient -rules:

rule: z "*"

rule: a "[!#99]~[!#99]"

rule: b "[!#99]=[!#99]~[!#99]"

rule: c "[!#99](~[!#99])~[!#99]"

rule: d "[!#99]([!#99])([!#99])[!#99]"

rule: z "[!#99]([!#99])([!#99])([!#99])[!#99]"

rule: e "[#99]1[!#99] - ,= ,@[!#99]1"

Each rule starts with the ”rule:” keyword, followed by a letter, followed by
a SMARTS pattern. The quotes around the SMARTS pattern are mandatory.
The order of atoms in SMARTS is important in most cases. The first atom is
a center of the multipole expansion and the local frame orign, the meaning of
the others are determined by the letter, which encodes the rule type. Note that
we use "[#99]" internally as a dummy atom, because SMARTS like "[#0]" or
"[#200]" do not work. That’s why the orientation rule’s SMARTS patterns look
a little strange. Also note, that if your molecule contains Einsteimium (which is
hardly the case), you should temporarly change it to something different.

z Only the first atom is important. This rule means that we do not care
about the local frame orientation. For example it is hard to pick sensible
orientation for tetrary carbons. Identity matrix is used as the coordinate
transformation matrix.

31

a The first two atoms are important. This is the rule for linear nonconjugated
fragments such as monovalent atoms or alkynes. The Z-axis is directed
from the second atom to the first. The X- and Y- axes are undefined and
picked through a vector product of the local Z-axis and the global axes.

b The first three atoms are important. This is the rule for conjugated linear
fragments, or the fragments, where we can suspect any type of interaction
with the nearest neighbour, or for the atoms with double bonds. In this
case the Z-axis is directed from the second atom to the first. The X-axis
is perpendicular to the plane, defined by the first three atoms in SMARTS
and the Y-axis is perpendicular to the local X- and Z- axes.

c The first three atoms are important. This rule is for bivalent linkers like
ether group. The Z-axis directed along the bisector of 2-1-3 angle and
poits from the sharp end of this angle ”outside” of the molecule. The
X-axis is perpendicular to the plane, defined by the first three atoms of
the SMARTS and the Y-axis is perpendicular to the X- and Z- axes.

f The first three atoms are important. This rule is for bivalent linkers like
ether group. The rule is similar to c, execept X- and Y- axes are rotated
by 45◦ .

d The first four atoms are important. This rule is for trivalent atoms like
amine nitrogen.

• In the case of a pyramidal configuration of the first atom, the Z-axis
points out of the top of the pyramid in the direction, formed as sum
of normalized bond vectors, pointing to the top of the pyramid. The
X-axis is defined as a vector product of the Z-axis and the 2→1 bond
vector. The Y-axis is a vector product of the X- and Z- axes.

• In the case of a planar configuration of the first atom, the X-axis is
the 2→1 bond vector, the Z-axis is a vector product of the X-axis
and the 3→1 bond vector, so it points out of the plane. The Y-axis
is perpendicular to the both X- and Z- axes.

e The first three atoms are important. This is special rule for the dummies.
The X-axis is defined as the vector from the second atom to the first one.
The Z-axis is perpendicular to the plane defined by the first three atoms.
The Y-axis is perpendicular to the both X- and Z- axes.

6.3 Multipole Placement Rules

The Multipole placement rules format is easy to read and modify. The rules start
with a common ”Placement-rules:” header. There are two types of records:
”atom” and ”group”. The records are passed from the top to the bottom, with
the latter overriding the former, so the ordering is important. The first one
should be something general with very specific ones at the bottom of the list.
See the example with an ”any atom”, followed by a ”heavy halogen”, followed
by the ”heavy halogen, connected to an aromatic moiety”, etc.

Placement -rules:

32

atom: "*" m

atom: "[Cl ,Br ,I]" mdzqz

atom: "[Cl ,Br ,I]a" mqz

atom: "[s]" mdvqz (1,1,0)

group: "c1ccccc1" mdzqz

Each atom rule starts with a ”atom:” keyword, followed by a SMARTS pattern
in quotes, followed by multipole flags. The quotes around the SMARTS pattern
are mandatory. The multipole flags can be any combination of ”m”, ”d”, and ”q”,
meaning a monopole, a dipole, and a quadrupole repectively. The symmetry
of the dipoles and quadrupoles may be restricted with the ”x”, ”y”, or ”z”,
keyword following the corresponding multipole keyword.1 This results in dipoles
being aligned with the corresponding local coordinate frame axis and quadrupole
having it’s main symmetry component aligned with this axis. Additionally, the
dipoles can be forced to align with an arbitrary vector with the ”v” keyword
followed by a direction vector, expressed in local coordinate frame (see the
example with aromatic sulfur atom). When a SMARTS match of an atom rule
happens, Electrostatic Tools programs will add the specified multipoles to the
first atom of the SMARTS pattern.

Group rules start with ”group:” keyword, followed by a SMARTS pattern in
quotes, followed by the multipole flags. The formatting and properties are
analogous the to atom rules. When a group SMARTS match happens, a program
will add a dummy atom center to the geometrical center of all SMARTS atoms
and place the specified multipoles on this dummy center. The dummy center
becomes connected with the first two atoms in the group’s SMARTS.

6.4 Multipole Molecule

The ”mmol” format was designed to store molecules with associated multipoles.
It consists of the two sections: the molecule with atoms and bonds, and the
multipole orient rules part. The latter is described in the corresponding section
above. The molecule section contains ”Atom” and ”Bond” records.

Molecule:

Atom: 6 (1.1057 , 0.0178 , -0.0171)

Multipoles: (1.1057 , 0.0178 , -0.0171)

Monopole: -0.136

Atom: 8 (2.5213 , 0.0064 , -0.0264)

Multipoles: (2.5213 , 0.0064 , -0.0264)

Monopole: -0.26592

Dipole: (0, 0, -0.4019)

Quadrupole: (-0.82922 , 0, 0, 0, 1.0774 , 0, 0, 0, -0.24822)

Atom: 1 (0.7455 , 0.9809 , -0.3871)

1Note that in versions prior to 0.4.0 the dipoles were aligned with Z-axis by default. After
0.4.0 this behaviour has changed. So ”d” in pre-0.4 equals to ”dz” in 0.4.0 and later versions.

33

Multipoles: (0.7455 , 0.9809 , -0.3871)

Monopole: 0.062576

Atom: 1 (0.7455 , -0.1514, 1.0007)

Multipoles: (0.7455 , -0.1514, 1.0007)

Monopole: 0.062576

Atom: 1 (0.7398 , -0.7799, -0.6679)

Multipoles: (0.7398 , -0.7799, -0.6679)

Monopole: 0.062576

Atom: 1 (2.8166 , 0.7242 , 0.5592)

Multipoles: (2.8166 , 0.7242 , 0.5592)

Monopole: 0.2142

Bond: 5 - 1 : 1

Bond: 3 - 1 : 1

Bond: 2 - 1 : 1

Bond: 2 - 6 : 1

Bond: 1 - 4 : 1

Orient -rules:

rule: z "*"

rule: a "[!#99]~[!#99]"

rule: c "[!#99](~[!#99])~[!#99]"

The atom record starts with the ”Atom:” keyword followed by a nuclear charge
(a. u.) and nuclear coordinates in brackets, separated by a comma (in Angstroms).
Optionally it can contain a ”Multipoles” field.

The ”Multipoles” record starts with the ”Multipoles:” keyword followed by
the coordinates of the expansion center in brackets, separated by a comma
(in Angstroms). Next, it contains three optional fields: a ”Monopole:”, a
”Dipole:” and a ”Quadrupole:” records, followed by the corresponding mul-
tipole moment value (in a. u.). Tensor values are written in brackets with
components separated by a comma. A single ”Multipoles” record has a single
internal coordinate system. The multipoles are written in terms of the principal
axes of the quadrupole. The orientation of the local coordinate frame is gov-
erned by the orient rules, recorded in its own section of file. We use the following
formulae to calculate the electrostatic potential from the multipoles:

V (−→r) =
q

|−→r |
+
−→r −→d
|−→r |3

+
−→r Q−→r
|−→r |5

, where −→r corresponds to radius-vector from the center of the multipole expan-
sion to a potential estimation point, q,

−→
d and Q correspond to the charge, the

dipole moment vector and the quadrupole moment matrix, transformed to the
global coodinate frame.

The bond record starts with the ”Bond:” keyword, followed by the first atom
index, followed by a ”minus” sign, followed by the second atom index, followed

34

by a colon sign, followed by a bond order value: (”1”, ”2”, ”3” or ”a” for single,
double, triple aromatic bonds respectively).

35

7 Appendix

7.A Use of DCC (Extra-point) model within GAFF force
field

Additional requirements to reproduce the following guide are: OpenBabel and
AmberTools20 software packages. Specifically, obabel, respgen, resp, antechamber,
tleap, parmchk2 and mdgx external utilities are used in this tutorial.

In this section we briefly review application of MEP-fitted Distributed Charge
Cluster model (DCC, see sections 3.3 and 3.5 of Tutorial for more info) for
molecular simulations using mdgx molecular dynamics system. We calculate
free energy of a bimolecular complex, using different charge schemes for electro-
static modelling within GAFF force field, and compare results. RESP, AM1-
BCC, MMFF94 and DCC charge models, aimend to reproduce RHF/6-31G*,
are compared to the reference ab initio data, calculated at MP2/aug-cc-pVTZ
level with frozen geometries of monomers.

As a model system, complex of ammonia with hydrogen is used (Figure 1). In
this complex ammonia’s nitrogen and water’s hydrogen forms explicit hydrogen
bond which is the case for illustrative demonstration of difference in energy
profiles, obtained using different charge models.

Figure 1: Relative orientation of ammonia and water in a complex; d=1.6, 1.8,
2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 Å.

Distance between Nitrogen and Hydrogen variates from 1.6 to 5 Angstroms, in-
cluding both values, with a step of 0.2 Angstroms. Overall, 9 molecular systems
are examined.

Original molecules files may be found in examples/Appendix_A directory. Those
files contain ammonia molecule (H3N.mol2) and a set of files with pre-oriented
and pre-positioned water molecules (H2O_%05.2f.mol2).Esp file for ammonia
calculated in 6-31G* basis is included (H3N.esp). This directory also contains
ready2use shell scripts implying utilities listed above are in your $PATH.

7.A.1 Charges calculation

At the first stage, we calculate charges for ammonia molecule which are required
to be assigned to the corresponding molecule before generating .prmtop and
.prmcrd files with force field parameters. As it was mentioned before, all listed
scripts may be found in examples/Appendix_A directory.

36

Listing 1: MMFF94 charges calculation procedure (calc_mmff94_charges.sh)

calculate mmff94 charges

obabel \

"original/mol2/H3N.mol2" -i mol2 \

-O "result/H3N_mmff94.mol2" -o mol2 \

--partialcharge mmff94

Listing 2: RESP charges calculation procedure (calc_resp_charges.sh)

calculate RESP charges

prepare input files for 2-step resp calculation

antechamber \

-pf y \

-i "original/mol2/H3N.mol2" -fi mol2 \

-o "tmp/H3N.ac" -fo ac \

-dr n -j 0

respgen -i "tmp/H3N.ac" -o "tmp/H3N.resp1.in" -f resp1

respgen -i "tmp/H3N.ac" -o "tmp/H3N.resp2.in" -f resp2

perform 2-step resp calculation

resp \

-O \

-i "tmp/H3N.resp1.in" \

-o "tmp/H3N.resp1.out" \

-t "tmp/H3N.resp1.q" \

-s "tmp/H3N.resp1.esout" \

-p "tmp/H3N.resp1.punch" \

-e "original/esp/H3N.esp"

resp \

-O \

-i "tmp/H3N.resp2.in" \

-o "tmp/H3N.resp2.out" \

-t "tmp/H3N.resp2.q" \

-q "tmp/H3N.resp1.q" \

-s "tmp/H3N.resp2.esout" \

-p "tmp/H3N.resp1.punch" \

-e "original/esp/H3N.esp"

assign computed charges

antechamber \

-pf y \

-i "original/mol2/H3N.mol2" -fi mol2 \

-o "result/H3N_resp.mol2" -fo mol2 \

-c rc -cf "tmp/H3N.resp2.q"

Listing 3: AM1-BCC charges calculation procedure
(calc_am1bcc_charges.sh)

calculate AM1 -BCC charges

antechamber \

37

-pf y \

-nc 0 \

-i "original/mol2/H3N.mol2" \

-fi mol2 \

-o "result/H3N_am1bcc.mol2" \

-fo mol2 \

-j 4 \

-c bcc \

-dr n

rm -f sqm.in sqm.out sqm.pdb

Listing 4: DCC charges calculation procedure (calc_dcc_charges.sh)

calculate DCC charges in two steps

first , add External Points on sigma bonds

of original ammonia molecule

so it would be like H-ep1 -N-ep2

for every H-N bond

mmol2mol \

-f \

--input "original/mol2/H3N.mol2" \

--output "tmp/H3N+ep.mol2" \

--ep-place -on -bond "1 1 2 0.3" \

--ep-place -on -bond "1 1 2 -0.3" \

--ep-place -on -bond "1 1 3 0.3" \

--ep-place -on -bond "1 1 3 -0.3" \

--ep-place -on -bond "1 1 4 0.3" \

--ep-place -on -bond "1 1 4 -0.3"

second , fit the system to the reference ESP

manually setting topology equality constraints

for DCC points

ep_fitter \

-f \

--input "tmp/H3N+ep.mol2" \

--output "tmp/H3N_dcc+ep.mmol" \

--grid "original/esp/H3N.esp" \

--placement -rules "original/rules/m.rules" \

--refit \

--break -equivalency \

--constraint "0 1 -1 0 0 0 0 0 0 0" \

--constraint "0 0 1 -1 0 0 0 0 0 0" \

--constraint "0 0 0 0 1 0 -1 0 0 0" \

--constraint "0 0 0 0 1 0 0 0 -1 0" \

--constraint "0 0 0 0 0 1 0 -1 0 0" \

--constraint "0 0 0 0 0 1 0 0 0 -1"

convert .mmol to .mol2

mmol2mol \

-f \

38

--input "tmp/H3N_dcc+ep.mmol" \

--output "result/H3N_dcc+ep.mol2"

7.A.1.1 DCC charges extraction
The H3N_dcc.mol2 file need further processing to become suitable for Amber-
Tools utilities. Since Extra Points are dummy atoms and have no real atomic
number, they can not be processed by antechamber, which is used for GAFF
atom types assignment. Thus, EPs must be removed while atomic charges
should be kept the same. It can be done either manually by deleting lines con-
taining Xx from H3N_dcc.mol2 and changing atoms number in the file header
or using the following script.

Listing 5: DCC charges extraction procedure (extract_dcc_charges.sh)

strip Extra Points (virtual atoms) from DCC model

while keeping MEP -fitted charges of NH3 molecule

obabel "result/H3N_dcc+ep.mol2" -ohin | \

grep -v -i "Xx" | \

obabel -ihin -omol2 -O "result/H3N_dcc.mol2"

In result, one should obtain the set of files (located in result directory), con-
taining ammonia molecule with charges assigned via different schemes:

• H3N_mmff94.mol2

• H3N_resp.mol2

• H3N_am1bcc.mol2

• H3N_dcc.mol2

7.A.2 Water molecule preparation

Water molecule(s) were prepared using the folowing procedure. For the sake of
simplicity, TIP3P water model was used.

Listing 6: Water molecules preparation procedure (prepare_water.sh)

assign TIP3P params to each water molecule

for d in 01.6 01.8 02.0 02.5 03.0 03.5 04.0 04.5 05.0; do

water_in_prefix="original/pdb/H2O_term_d_${d}"

water_out_prefix="result/H2O_term_d_${d}"

tleap_in="tmp/H2O_term_d_${d}.tleap.in"

cp "prepare_water_template.tleap.in" "${tleap_in}"

sed -i "s,H2O_in ,${water_in_prefix},g" "${tleap_in}"

sed -i "s,H2O_out ,${water_out_prefix},g" "${tleap_in}"

tleap -s -f "${tleap_in}"

done

39

7.A.3 Force field parametes asignment

At the next stage, we assign forcefield (GAFF) parameters to our molecules.
To do that, first we need to assign GAFF atomic types to ammonia molecule.
Atomic types assignment for small molecules may be performed via antechamber
utility.

Listing 7: GAFF types assignment procedure (assign_gaff_types.sh)

for all files with charges calculated

for i in H3N_mmff94 H3N_resp H3N_am1bcc H3N_dcc; do

generally , this first step is unnecessary

but performed to ensure that partial charges

are marked as user -defined

for that we extract calculated atomic charges

to separate file(s) and then pass them

on the next step as manually -defined

antechamber \

-pf y \

-i "result/${i}.mol2" -fi mol2 \

-o "tmp/${i}.mol2" -fo mol2 \

-c wc -cf "tmp/${i}.mol2.q" \

-dr n -j 0

at the second step assign GAFF types and set

previously extracted atomic charges

antechamber \

-pf y \

-i "result/${i}.mol2" -fi mol2 \

-o "result/${i}.gaff.mol2" -fo mol2 \

-c rc -cf "tmp/${i}.mol2.q" \

-at gaff \

-dr y -j 4

done

Next, we explicitly obtain all force field parameters values using parmchk2 utility
for all kinds of ammonia and water molecules.

Listing 8: GAFF parameters assignment procedure (get_gaff_parameters.sh)

use parmchk2 to get GAFF parameters

for every ammonia molecule

for i in H3N_mmff94 H3N_resp H3N_am1bcc H3N_dcc; do

echo "${i}"

parmchk2 \

-i "result/${i}.gaff.mol2" -f mol2 \

-o "result/${i}.gaff.frcmod" \

-s 1 \

-a Y \

-w Y

done

40

same for every water molecule

for i in 01.6 01.8 02.0 02.5 03.0 03.5 04.0 04.5 05.0; do

echo "${i}"

parmchk2 \

-i "result/H2O_term_d_${i}.gaff.mol2" -f mol2 \

-o "result/H2O_term_d_${i}.gaff.frcmod" \

-s 1 \

-a Y \

-w Y

done

7.A.4 Preparation of mdgx input files

7.A.4.1 Combining ammonia and water molecules into complex

Now we can use molecules with assigned types an obtained force field parameters
to prepare ammonia+water complex via tleap utility. H2O, H3N and COM-
PLEX entries should be replaces with a corresponding input water molecule file-
name, input ammonia molecule filename and output complex filename (for de-
tails see prepare_complex.sh). As a result, we obtain 3 files: ammonia+water
complex in .mol2 format, .prmtop and .prmcrd files to use with mdgx.

Listing 9: Tleap input file example for combining ammonia and war
(prepare_complex_template.tleap.in)

source leaprc.gaff

source leaprc.water.tip3p

loadamberparams H2O.gaff.frcmod

loadamberparams H3N.gaff.frcmod

h2o = loadmol2 H2O.gaff.mol2

check h2o

h3n = loadmol2 H3N.gaff.mol2

check h3n

c = combine { h2o h3n }

check c

saveamberparm c COMPLEX.gaff.prmtop COMPLEX.gaff.prmcrd

savemol2 c COMPLEX.gaff.mol2 0

quit

7.A.4.2 Preparation of EP description suitable for mdgx
mdgx uses its own format to describe External Points postions; EPs are only used
through simulaton process - input and output molecule files do not contain them
in any form.

41

To set up EPs positions, one generally must specify uneque EP name, type of
rule to position EP, distance between EP and a pivot atom and partial charge
EP bears. It should be noted that EPs considered having zero mass and VdW
radius.

Part of file used in this work (dcc_template.mdgx.rules) is listed below.

Listing 10: Tleap input file example for combining ammonia and war
(dcc_template.mdgx.rules)

&rule

epname E1 ,

style 1,

frame1 N,

frame2 H,

v12 DIST1 ,

q Q1 ,

sig 0.0,

eps 0.0,

residue LIG ,

&end

&rule

epname E2 ,

style 1,

frame1 N,

frame2 H,

v12 DIST2 ,

q Q2 ,

sig 0.0,

eps 0.0,

residue LIG ,

&end ,

• epname defines EP name

• style defines a certain rule to position EP; 1 means placement along the
bond between two atoms (specified by frame rules)

• v12 defines distance (in this case, relative to frame1 atom)

• q defines partial charge of EP

For more details, see corresponding section for Amber manual.

7.A.4.3 Preparation input file for mdgx
Example of mdgx input file is listed below. Note that in case of DCC, files
with EP placement rules should be explicitly specified in &files section (see
calc_energy_template+dcc.mdgx.in for details).

Listing 11: Example of mdgx input file (calc_energy_template.mdgx.in)

&files

-p COMPLEX_in.gaff.prmtop

42

-c COMPLEX_in.gaff.prmcrd

-o COMPLEX_out.mdgx.out

&end

&configs

verbose=1,

count=1,

maxcyc=1,

ncyc=1,

imin=2,

ntb=0,

cut =2000.0 ,

outbase ’COMPLEX_out.mdgx.out ’,

write ’cdf ’,

outsuff ’cdf ’,

&end

7.A.5 Energy calculation

Finally, we calculate the free energy of a complex using mdgx and compare them
to the reference values.

Listing 12: Free energy calculation procedure (run_mdgx.sh)

run mdgx on prepared input files

mkdir -p result/mdgx_out

cd result/mdgx_in

for i in H3N_mmff94 H3N_resp H3N_am1bcc H3N_dcc; do

for d in 01.6 01.8 02.0 02.5 03.0 03.5 04.0 04.5 05.0; do

mdgx -O -i "H2O_term_d_${d}+${i}.mdgx.in"

done

done

To print out calculated energy values, invoke print_energies.sh

43

Table 1: Energies of H3N–HOH complexes, kcal/mol

Å mmff94 resp am1bcc dcc
1.6 -5.5098 -5.6180 -4.7096 -10.2918
1.8 -7.0008 -7.0815 -6.4034 -10.1026
2.0 -6.4261 -6.4879 -5.9692 -8.5232
2.5 -4.0321 -4.0665 -3.7774 -4.9367
3.0 -2.4671 -2.4881 -2.3114 -2.9176
3.5 -1.5747 -1.5884 -1.4729 -1.8230
4.0 -1.0486 -1.0581 -0.9786 -1.1963
4.5 -0.7222 -0.7290 -0.6720 -0.8153
5.0 -0.5099 -0.5149 -0.4727 -0.5713

Figure 2: Energies of H3N–HOH complexes.

44

	About
	Installation
	Tutorial
	Multipole Fit
	Multipole Placement
	Extra Points Placement
	Topology Equivalence
	Extra-Point Position Fit
	Converting MMol to Common Format
	Multipole Charge Cluster (MCC) placement
	Manually adding multipoles to the molecule
	Copying multipoles to the molecule
	Editing the .ESP files
	Coplex MEP RMSD estimations
	Using Script Bindings

	Program Overview
	General notes
	mult_fitter
	ep_fitter
	mmol2mol
	esp_modifier
	mep_rmsd

	Helper scripts
	get_eel.py
	get_multipoles.py

	File Formats
	General Notes
	Multipole Orient Rules
	Multipole Placement Rules
	Multipole Molecule

	Appendix
	Use of DCC (Extra-point) model within GAFF force field
	Charges calculation
	Water molecule preparation
	Force field parametes asignment
	Preparation of mdgx input files
	Energy calculation

